
Python in NakedMud:
More Than a Scripting Language

Geoff Hollis
hollisgf@email.uc.edu

November 18, 2006

1

Contents

1 Introduction 3

2 Triggers 4
2.1 Reset Triggers . 4
2.2 Speech Triggers . 5
2.3 Drop Triggers . 5
2.4 Give Triggers . 6
2.5 Receive Triggers . 7
2.6 Enter Triggers . 8
2.7 Exit Triggers . 10

3 Modules 12
3.1 Loading Python Modules and Packages 14
3.2 Auxiliary Data and Storage Sets . 14

4 Module, Method, and Variable Reference 17
4.1 Mud Module . 17

4.1.1 Methods . 17
4.2 Character Module . 18

4.2.1 Methods . 18
4.3 Char Class . 19

4.3.1 Methods . 19
4.3.2 Variables . 21

4.4 Room Module . 22
4.4.1 Methods . 22

4.5 Room Class . 22
4.5.1 Methods . 22
4.5.2 Variables . 23

4.6 Object Module . 23
4.6.1 Methods . 24

4.7 Obj Class . 24
4.7.1 Methods . 24
4.7.2 Variables . 25

4.8 Event Module . 26
4.8.1 Methods . 26

4.9 Storage Module . 26
4.9.1 Storage Set Methods . 26

2

4.9.2 Storage List Methods . 28
4.10 Auxiliary Data Module . 28

3

1 Introduction

The original motivation for embedding Python into NakedMud was as a scripting
language. However, it quickly became evident that Python could serve greater pur-
poses for the codebase. It is easy to load Python modules and packages from within
a C application, and with basic access to the mud’s functions and data, Python can
basically act as a secondary language for programming in NakedMud. This tutorial
will cover how Python works, with respect to NakedMud. We’ll do this by writing ex-
ample triggers. However, it should be noted that Python is used for much more. For
example: rooms, objects, and characters are actually programmed as Python scripts.
In addition, new modules can be written in Python and added to the mud, just like
in C. The information here can just as easily be applied to building or programming
new modules in python.

We do cover some of the Python basics like importing and initializing a package, this
is not a tutorial on Python. If you have never programmed in Python before, it is
suggested you pick up an introductory book on Python, or do some Python tutorials
to get a hang of the language’s syntax. http://www.python.org is a great source for
guides, tutorials, and documentation on the Python programming language.

4

2 Triggers

Python was originally intended to function as a scripting language for writing triggers
in NakedMud (similar to how DG Scripts work for CircleMUDs). Python was chosen
because of it’s relatively clear and simple syntax, and easy learning curve, even for
someone with minimal or no programming experience - the types of people (i.e.
builders) we might expect to see using NakedMud’s scripting language the most. A
handful of trigger types are provided with the core NakedMud release. These range
from triggers that are run when an object or mobile is loaded, triggers that run
when someone speaks or enters a command, triggers when someone enters or leaves
a room, and a handful of others. Here we will cover the basic trigger types, and
provide sample code for each.

As a quick detour before we dive into the trigger types, it would be good to know how
to edit and attach triggers. Assuming you are using NakedMud’s standard text OLC,
you can create triggers with the tedit <key> command. You can attach triggers to
mobiles, objects, and rooms by editing the thing (i.e. medit <key>, oedit <key>,
redit <key>, respectively) and then going to the Trigger menu.

2.1 Reset Triggers

Reset triggers can be attached to rooms, and are run every time the zone a room
belongs to is reset. Every reset trigger has a variable called me, which is a pointer
to the room being reset. Below is an example trigger that will hopefully elucidate
ways in which initialization triggers can be used:

##

Reset trigger no. 1 - resetting a room. This trigger will attempt to load a

mobile with with key ’mysty’ into the room if she exists nowhere else in the

game. Once mysty is handled, the trigger will check if there are any tables

in the room. If there are less than 4 tables in the room, tables will be

loaded until there are 4.

####

Load Mysty if there are no copies of her in the game

if count_mobs("mysty@examples") < 1:

load_mob("mysty@examples", me)

5

Load a few tables into the room

num_tables = count_objs("table@examples", me)

while num_tables < 4:

load_obj("table@examples", me)

num_tables = num_tables + 1

2.2 Speech Triggers

Speech triggers are intended for use with mobiles and room. Any time someone uses
the ’say’ or ’ask’ command in the same room as a mobile with a speech trigger,
the trigger will be executed. Any time someone uses ’say’ in a room with a speech
trigger, the trigger will be executed. Speech triggers have 3 variables: me, ch, and
arg. The me variable points to the mobile or room with the attached trigger. The
ch variable points to the character doing the speaking. The arg variable is the actual
speech that started the trigger.

##

If this trigger is attached to a mobile, any time someone in the same room

as the mobile says hello hi, or how do you do, the mobile will reciprocally

greet the original speaker.

####

if arg == "hi" or arg == "how do you do?":

wait a second, and then say hi back

me.act("delay 1 say hello, " + ch.name + ". " + \

"What brings you to " + me.room.name + "?")

2.3 Drop Triggers

There are two ways in which drop triggers can be used. The first case is attaching
a drop trigger to an object. Whenever the object is dropped, the trigger will go
off. The second case is attaching the trigger to a room. In this case, whenever
something is dropped into the room, the trigger will execute. Drop triggers have
three arguments: me, ch, and obj. The me variable is a pointer to whatever the
trigger is attached to (object being dropped, or room the object is dropped to). The
ch variable is a pointer to the character doing the dropping. The obj variable is a
pointer to the object being dropped. In the case that the drop trigger is attached to

6

an object, the value of this variable is the same as the value of me. Below are two
example drop triggers - one for a room and one for an object:

##

Drop trigger no. 1 - dropping objects. This trigger is attached to an object

in order to ’curse’ it. Any time a player drops the object, it will return

itself to that player’s inventory!

####

send messages out to let people know the item is returning

message(ch, None, me, None, False, "to_char", \

"$o resists being released! As soon as you let go of it, it flies " \

"right back into your hands!")

message(ch, None, me, None, True, "to_room", \

"As soon as $n lets go of $o, it flies right back into $s hands!")

transfer the item back

me.carrier = ch

##

Drop trigger no. 2 - rooms with dropped objects. When an object is dropped to

any room with the attached trigger, a sticky glue will fuse the object to the

ground, preventing it from being moved.

####

let everyone in the room know what is happening

me.send("As soon as " + obj.name + " touches the ground, a sticky substance " \

"bubbles up from the floor and fastens it in place!")

set the notake flag, so noone can get the object

obj.bits = ’notake, ’ + obj.bits

2.4 Give Triggers

There are two ways in which give triggers can be used. Case one is when the give
trigger is attached to an object. When this happens, the trigger will execute any

7

time someone gives the object to another person. Case two is when the give trigger
is attached to a person. When this happens, the trigger will execute any time the
mobile gives an object. Give triggers have four variables: me, ch, obj, and recv. The
recv variable is the person the object is being given to. The me variable is the thing
that the trigger is attached to. The ch variable is the character doing the giving.
The obj variable is the object that is being given. In the case that the give trigger
is attached to an object, obj will be the same value as me. In the case that the give
trigger is attached to a mobile, ch will be the same value as me. Below is a simple
give trigger that can be attached to an object:

##

Give trigger no. 1 - give trigger for an object. Like the demo drop trigger,

this trigger will ’curse’ an object. Any time the object is given by someone

to another person, the object will return to the giver. If possible, it will

equip to the person. Failing that, it will go back to the person’s inventory.

####

let everyone in the room know what is happening

message(ch, None, me, None, False, "to_char", \

"$o resists being released! As soon as you let go of it, it flies " \

"right back into your hands!")

message(ch, None, me, None, True, "to_room", \

"As soon as $n lets go of $o, it flies right back into $s hands!")

transfer the item back, first trying to equip it. If that fails, then just try

to put it to our inventory

try:

ch.equip(me)

except:

me.carrier = ch

2.5 Receive Triggers

Receive triggers are very similar to give triggers. When a person gives someone else
an object, a receive trigger is also executed. Receive triggers have 3 variables: me,
ch, and obj. Me is the person receiving the object. Ch is the person giving the
object. Obj is the object being given. Below is a simple receive trigger:

8

##

Receive trigger no. 1 - receiving an item. If the item being given is a pint

of alcohol, the receiver thanks the giver.

####

check the vnum to see if it’s a pint of beer

if obj.isinstance("pint@examples"):

let’s set this up as a delayed action to add a bit of spice.

def act_thanks(ch, data = None, arg = None):

ch.act("say thanks, mate!")

queue up the action so it will execute in 1 second. We can provide

3 more args if we so choose. The first is another method that would

execute if the action was interrupted. This method takes the same form as

act_thanks. The second is any arbitrary variable. The third is a string

argument. They would fill in the 2nd and 3rd variables to the completion or

interrupt function, when the action is completed or interrupted. None is an

acceptable value for any of these 3 optional arguments.

me.startAction(1, act_thanks)

all of this was equivalent to: me.act("delay 1 say thanks, mate!")

2.6 Enter Triggers

Enter triggers can be used in two ways. The first is to attach the trigger to a room.
Any time a character enters the room, the trigger will execute. The second way is
to attach the enter trigger to a mobile. Any time someone enters the same room as
the mobile, the trigger will execute. Both types of enter triggers have two variables
assocciated with them: me and ch. Me is the room or person the trigger is attached
to. The ch variable is the person who is doing the entering. Below are two example
enter scripts - one for a room and one for a character:

##

Enter script no. 1 - entering a scripted room. If a character stays in the

room for more than 5 seconds, he will be randomly teleported to another room.

####

We’ll need a function to handle the delayed transportation event. Owner is

9

the room that is doing the teleporting, and ch is the person being moved

def event_func(owner, ch, arg = None):

if we’ve stayed in the same room, transfer us somewhere new

if ch.room == owner:

ch.send("You reel in dizziness for a moment, and suddenly the " \

"world looks very different.")

message(ch, None, None, None, False, "to_room", \

"$n disappears in a puff of smoke!")

ch.room = random.choice(["by_stage", \

"tavern_entrance", \

"the_bar", \

"the_fireplace"]) + "@examples"

ch.act("look")

set up a new event to trigger in five seconds.

start_event(me, 5, event_func, ch)

##

Enter trigger no. 2 - greeting characters. This script is intended to be

attached to mysty@examples. When she meets someone for the first time,

she will greet that person and flag him/her as having been met.

####

check to make sure that:

a) this is a PC

b) we’ve never met the person before

if ch.is_pc and not ch.hasvar("met_mysty"):

send different message to different gendered characters

if ch.sex == "male":

me.act("say Well hello there, darlin’. I’ve never had the pleasure of " \

"seeing your pretty face around these parts. If you need a hand, " \

"or perhaps a drink, just ask me for help.")

else:

me.act("say Welcome to the Stuck Swine! I hope it’s to your liking here. " \

10

"If you need a hand, or perhaps a drink, just ask me for help.")

set a variable so we know we’ve met Mysty before

ch.setvar("met_mysty", 1)

2.7 Exit Triggers

Like enter triggers, exit triggers can be attached to rooms and mobiles. If an exit
trigger is attached to a room, the trigger will execute any time someone leaves the
room. If the trigger is attached to the mobile, it will execute any time someone
leaves the room the mobile is in (excluding the mobile itself). Exit triggers have four
variables associated with them: me, ch, ex. The me variable points to the thing that
has the trigger attached to it. The ch variable is the person leaving. The ex variable
is the exit being left through. Below are some sample exit scripts:

###

Exit trigger no. 1 - leaving a room. When a character leaves any room with the

attached trigger, he will trip and fall, spilling all of his items over the

ground in the old room.

#####

assign the inv to a local variable so it doesn’t have to be rebuilt

when we need it the second time

inv = ch.inv

depending on whether or not we have items, send different messages

if len(inv) > 0:

ch.send("{yAs you leave " + me.name + ", you trip and drop all of your " \

"items on the ground!")

message(ch, None, None, None, False, "to_room", \

"$n trips and falls as $e leaves " + me.name + ", dropping all " \

"of $s items in the process!")

else:

ch.send("You trip and fall!")

message(ch, None, None, None, False, "to_room", \

"$n trips and falls as $e leaves " + me.name + "!")

now, transfer all of the items to the ground

11

for obj in inv:

obj.room = me

###

Exit Trigger no. 2 - following characters. When attached to a mobile, this

trigger will make that mobile follow the first person who leaves the room it

is in. Once the mobile finds a person to follow, it will continue to follow

that person every time he tries to move.

#####

See if we’ve found someone to follow yet. If not, pick this person

if not me.hasvar("char_to_follow"):

me.setvar("char_to_follow", ch.uid)

See if the person leaving the room is our target. If it is, follow

if me.getvar("char_to_follow") == ch.uid:

go through the same exit that the person we are following did

for name in me.room.exnames:

if ex == me.room.exit(name):

me.act(name)

break

12

3 Modules

As the title of this article suggests, Python is used for more than just scripting. In
fact, it can be used for real programming as well. About 95% of the things you can do
in C, you can do in Python if you wish. You might say that NakedMud is bilingual;
it can be arbitrarily extended in two different languages. However, there is a caveat
to this feature: it is a rather cumbersome process to give C access to aspects of the
mud written in Python. It is slightly less cumbersome (but cumbersome nonetheless)
to give Python access to aspects of the mud written in C. The moral of this caveat
is that, if you intend to do any programming in Python, you will seriously want to
consider how the code you write will interact with code you write in C. For example’s
sake, let’s consider writing a combat system in Python. Depending on the theme
of your mud, a combat system will probably be expected to interact with a magic
system, a clan system, a skill system, etc... choosing to write the combat system in
Python will pigeon-hole you into also writing these other systems in Python; it is
much more cumbersome to translate from Python to C than it is to translate from C
to Python. Before writing anything in Python, you will want to ask yourself: what
other aspects of my mud will interact with this system, and do I want to write these
aspects in Python as well?

So the practical question arises: when do I want to program something in Python,
and when do I want to program something in C? There are many ways you can
answer this question - some good, some bad. I will outline a few I think are good
answers to the question. Of course, I am not a programming guru by any means, so
approach my point of view critically with your own knowledge.

The first situation where you might want to program in Python is when you are
prototyping a new idea. Programming in Python is much quicker than programming
in C. This makes Python a very useful tool for testing out a new idea you have. If
you are skeptical as to whether the idea will work well in practice or not, and you
would not like to risk the time writing it in C if you are not absolutely certain it
will work, you can turn to Python to quickly get it prototyped for evaluation. If you
decide you like how it works, you can then translate the code into a NakedMud C
module.

The second situation is when you are confident the code you intend to write will never
interact with any other aspect of the mud. For instance, I am currently working on an
inter-mud communication module (i.e. people on different NakedMuds will be able
to communicate with each other). There is little reason to suspect such a feature

13

would ever need to interact with anything else in a mud. The socket handling is also
much easier to deal with in Python than it is in C, so why not do it in Python?
When you are certain what you want to do will never have to interact with any other
aspect of the mud, writing it in Python is probably a good choice.

Some people find it useful to separate the driver and the library of a mud. In our
situation, a good way to define the library of NakedMud would be all of the core
functions, action and event handlers, game mechanics, data structures, etc... that
are central to the functioning of the mud. The driver would be everything else
(e.g. player commands, mobile AI, minigames, etc...). The library would be similar
to your game engine, and the driver would be a collection of all the ways in which
things instantiated within the gameworld interact with the game engine. Drawing the
”what should I write in C and what should I write in Python” line at the separation
between the library and the driver of your mud would probably work well. Your
mud library should not need to access your mud driver, so you should never need
to translate between languages beyond the point of giving Python access to the core
functionality of your MUD. Such a setup would also give you the opportunity to
do a great deal of your programming Python, which will undoubtedly speed the
development process.

The fourth situation when you might want to write something in Python is when
you commit yourself to writing everything in Python. Even though the majority
of NakedMud has been written in C, it is quite conceivable at this point in its
development for a person to completely switch languages and do everything else in
Python. This is an option some people might want to entertain - especially those who
are not well-versed in C programming. Python is a much easier language to program
in, and quite a bit more newbie-friendly than C. Simple programming errors are
almost always non-fatal to your program (instead, an exception will be thrown and
reported). Python code can also be dynamically reloaded into the mud, cutting down
on the need for reboots or copyovers. Undoubtedly, there will be a need to do a little
bit of work in C, but this will largely concern revealing more bits of NakedMud to
Python so you can continue to do the ’real’ programming in Python.

Hopefully these opinions will help you decide how you will answer the question of
”what will I write in Python and what will I write in C”? These are by no means
the only ways you might want to answer the question - they may not even be the
best ways, or consistently reliable ways. I am by not an expert (or even a veteran) at
answering these types of questions. Heck, I might even have the terminology wrong!
But, the meaning is there and (hopefully) intelligible. I warn you, give this topic
some serious consideration before you commit yourself to any decision. Outline what

14

it is exactly you wish to do with your mud, and try to identify any potential problems
that might arise from writing any aspect of it in Python or C.

3.1 Loading Python Modules and Packages

If you’ve decided you would like to write a module in Python, adding it to NakedMud
is a relatively painless process. Simply drop it into the lib/pymodules directory.
The next time your mud restarts, the module will automagically be loaded into
NakedMud. You can also load modules into the mud while it is running through use
of the pyload command. Specify the name of a module, and it will be (re)loaded into
the mud. You can also (re)load Python packages (i.e. directories of python modules)
in the same way. WARNING: This may be very dangerous if you are loading or
reloading a module or package that installs auxiliary data on something.

3.2 Auxiliary Data and Storage Sets

In the article entitled Extending NakedMud: An Introduction to Modules, Storage
Sets, and Auxiliary Data, I (hopefully!) pointed out how important it is to un-
derstand the mechanics of auxiliary data and storage sets. They are fundamental
aspects of of the codebase; without understanding how they work, you will not get
very far in the development process. The aforementioned tutorial only covered their
usage on the C end of things. Storage sets and auxiliary data are equally important
on the Python end of things. However, the syntax employed to use them is slightly
different than it is in C. that is what this section intends to cover - syntactic dif-
ferences. For an actual tutorial on how/why to use auxiliary data and storage sets,
you are referred to the aforementioned tutorial. All of the concepts covered in that
article (sans actual implementation) are equally applicable to Python programming
as they are to C programming. As an exercise to the reader, it may be worthwhile
to try and implement the mail module covered in the C tutorial on storage sets and
auxiliary data as a Python module.

A list of the methods available to Storage Sets is available in the reference section
of this manual. Below is a short example of how one might go about implementing
auxiliary data in Python.

###

#

15

auxiliary_example.py

#

Provides a simple example of how one might install and interact with

auxiliary data in python. This module installs a new piece of auxiliary data,

and sets up two new commands that allow people to interact with that auxiliary

data.

#

###

from mud import add_cmd

import auxiliary

import storage

Example auxiliary data class. Holds a single string variable that

people are allowed to get and set the value of

class ExampleAux:

Create a new instance of the auxiliary data. If a storage set is supplied,

read our values from that

def __init__(self, set = None):

if not set:

self.val = "abcxyz"

else:

self.val = set.readString("val")

copy the variables in this auxiliary data to another auxiliary data

def copyTo(self, to):

to.val = self.val

create a duplicate of this auxiliary data

def copy(self):

newVal = ExampleAux()

newVal.val = self.val

return newVal

returns a storage set representation of the auxiliary data

def store(self):

set = storage.StorageSet()

set.storeString("val", self.val)

return set

16

allows people to peek at the value stored in their ExampleAux data

def cmd_getaux(ch, cmd, arg):

aux = ch.getAuxiliary("example_aux")

ch.send("The val is " + aux.val)

allows people to set the value stored in their ExampleAux data

def cmd_setaux(ch, cmd, arg):

aux = ch.getAuxiliary("example_aux")

aux.val = arg

ch.send("val set to " + arg)

install our auxiliary data on characters when this module is loaded.

auxiliary data can also be installed onto rooms and objects. You can install

auxiliary data onto more than one type of thing by comma-separating them in

the third argument of this method.

auxiliary.install("example_aux", ExampleAux, "character")

add in our two commands

add_cmd("getaux", None, cmd_getaux, "unconcious", "flying", "admin",

False, False)

add_cmd("setaux", None, cmd_setaux, "unconcious", "flying", "admin",

False, False)

As can be seen, auxiliary data in Python is not that much different from auxiliary
data in C. The only big difference is that auxiliary data in Python takes the form
of a class with methods rather than a struct with functions. There is also no delete
method (Python does its own garbage collection). Nor is there a read method.
Instead, storage sets can be provided as an optional argument to the auxiliary data
init method. Hopefully it is obvious that, aside from these superficial differences,

auxiliary data in C and Python is exactly the same!

17

4 Module, Method, and Variable Reference

4.1 Mud Module

This module contains a smattering of miscellaneous methods that do not really fit
in anywhere else. For importing, this module’s name is simply mud.

4.1.1 Methods

def set global(key, val)
This function maps a key to a val in the global variable table. Both keys and vals
can be any arbitrary Python object.

def get global(key)
Returns the val that key maps to in the global variable table. If key does not have
a corresponding val, returns None.

def erase global(key)
Removes the given key and its corresponding val from the global variable table.

def add cmd(name, sortAs, func, minPos, maxPos, grp, mobOk, interrupts)
Adds a new command to the game. Name is the thing players will have to type
to activate this command. Commands are normally sorted in the command table
by their name, but there are some situations where this will lead to undesirable
shortforms of commands. So, for instance, ”n” activating ”nod” instead of ”north”.
The sortAs variable can be used to force a shortform on a command (i.e. ”n” for
”north”). Normally, this value should be None. The func variable is a pointer to
the method that instantiates this command. Methods that are acting as commands
should have 3 parameters: ch, cmd, and arg. The minPos and maxPos are string-form
positions that the character is allowed to use the command from. The grp variable is
the user group this command belongs to. The mobOk variable is a boolean value that
says whether or not non-pc characters can use this command. The interrupts variable
is a boolean value that says whether or not this command interrupts a character’s
action handler.

def message(ch, vict, obj, tobj, hideNoSee, to, message)
Sends a message out to the specified types of people. Works identically to the message
command defined in the inform.h header file, with the exception that to is a comma-

18

spearated list of scope types this message has. To can include to room, to char, and
to vict.

def format string(string)
Returns a new copy of the string that has been formatted to act as a description,
helpfile, and other blocks of text that should be in a paragraph form.

def extract(thing)
Extract an object or mobile from the game. Note that this method is extremely
volatile, and should never be called from a script, as the function that called the
script will more likely than naught still need the thing being extracted. Use with
care!

def ite(outcome, if true, if else)
ite (if/then/else) is a functional form of the an if/then/else block. This has been
supplied so that builders can embed scripts within descriptions (scripts must be
surrounded by [and]).

4.2 Character Module

A module containing character-related utilities (e.g. building a list of all characters in
game, loading a new character instance to game, counting occurrences of a character
instance in game, etc...). This module is also home to the Char class, which is the
Python representation of NakedMud’s PCs and NPCs. For importing purposes, this
module’s name is char.

4.2.1 Methods

def char list(self)
Returns a list of all the characters currently in the game.

def socket list(self)
Returns a list of all the characters with attached sockets currently in the game.

def load mob(self, key, where, position = ”standing”)
Load an instance of the mobile with the given key into the game. Where can either be
a room or room key, or an object that is a piece of furniture. The character’s position
can also be set at loadtime, to one of the valid positions. By default, characters load

19

to the standing position. This method returns a pointer to the mobile it loads into
the game.

def count mobs(self, key, where = char list())
Returns a count of all the mobiles that are an instance of the mob key in the given
scope. Where can be a room or room key, or a piece of furniture. If where is None,
every character in the game is checked.

4.3 Char Class

This class is a Python wrapper around the CHAR DATA C struct. Contains various
methods and variables for interacting with the actual character that this Python
class wraps around. The Char class is contained within the char module.

4.3.1 Methods

def init (self, uid)
The initializer for the Char class. Takes in a uid for the character we wish to create
a Class around. Note that new characters cannot be loaded into game with this
initializer. To do that, you will want to look at the load mob function.

def attach(self, script vnum)
Attach a script with the given vnum to the character.

def detach(self, script vnum)
Detach a script with the given vnum from the character.

def send(self, mssg)
Send the character a message. A newline will be appended to the end of the mes-
sage.

def sendaround(self, mssg)
Send a message to everyone in the character’s room except for the character himself.
Appends a newline to the end of the message.

def act(self, cmd)
Force a character to perform the specified command

def setvar(self, key, val)
Set the value of a character’s variable. Keys must be strings, and vals can be strings,

20

ints, or doubles.

def getvar(self, key)
Returns the value associated with the given key in the character’s variable table.
Keys must be strings, and vals can be strings, ints, or doubles. If a character does
not have a variable with the given key, None is returned.

def hasvar(self, key)
Returns true if the character has a variable with the given key.

def deletevar(self, key)
Delete a variable with the given key from the character’s variable table.

def equip(self, object, where = None)
Equips a character with the specified object. If where is not supplied, the item will
equip to the first available positions. If where is supplied, the object will try to be
equipped to the given position names.

def isActing(self)
Returns true of the character is in the midst of performing a delayed action.

def startAction(self, delay, complete, interrupt = None, data = None, arg = None)
Start a new delayed action of the specified length. The complete parameter is a
pointer to the method that will be executed when the delay finishes counting down.
This function must take 3 arguments: a pointer to the character performing the
action, a pointer to data (even if it is None), and a pointer to arg (even if it is None).
Interrupt is an optional function of the same form that is called if the character’s
action is ever interrupted. Data is an optional variable of any type. Arg is an optional
string variable.

def interrupt(self)
Interrupts the character’s current action, if he has one in waiting.

def getAuxiliary(self, key)
Returns the character’s auxiliary data with the given key. If the character has no
auxiliary data with the given key, None is returned.

def cansee(self, thing)
Returns whether or not the character can see the given thing (which can be another
character, or an object).

def page(self, string)
Sends a long piece of text to the character in a way that allows the person to go back

21

forth through the text (like a book).

def isinstance(self, prototype)
Returns whether or not the character is inherited from the given prototype.

4.3.2 Variables

Characters have various variables associated with them. Some are settable, and some
are not. below is a list of those variables, and details of what each is for.

Variable Settable Description
inv A list of objects in the character’s inventory.
objs Same as inv
name

√
The character’s name

mname
√

The character’s name when multiple instances are in the room.
desc

√
The paragraph description of the character when looked at.

rdesc
√

The description of the character when seen in a room.
mdesc

√
The character’s room description when multiple instances are in the room.

keywords
√

A comma-separated list of named the character can be referenced by.
sex

√
The character’s gender, in string form. Will be male, female, or neutral.

gender
√

same as sex.
race

√
The character’s race, in string form.

pos
√

The character’s current position, in string form.
position

√
Same as pos

room
√

A pointer to the room the character is in.
last room A pointer to the previous room the character was in. Or None.
on

√
A pointer to the piece of furniture the character is currently on.
To remove a character from a piece of furniture, set on to None.

uid The character’s unique identification number.
prototypes A comma-separated list of prototypes the character inherits.
is npc True if the char is an NPC. False otherwise.
is pc True if the char is a PC. False otherwise.
hisher ”his” if the character is male, ”her” if the character is female,

and ”its” if the character is genderless.
himher ”him” if the character is male, ”her” if the character is female,

and ”it” if the character is genderless.
heshe ”he” if the character is male, ”she” if the character is female,

and ”it” if the character is genderless. Not settable.

22

4.4 Room Module

A module containing room-related utilities. This module is also home to the Room
class, which is the Python representation of NakedMud’s rooms. For importing
purposes, this module’s name is room.

4.4.1 Methods

Currently, there are no methods in the room module.

4.5 Room Class

This class is a Python wrapper around the ROOM DATA C struct. Contains various
methods and variables for interacting with the actual room that this Python class
wraps around. The Room class is contained within the room module.

4.5.1 Methods

def init (self, vnum)
The initializer for the Room class. Takes in a vnum for the room we wish to create
a Class around.

def attach(self, script vnum)
Attach a script with the given vnum to the room.

def detach(self, script vnum)
Detach a script with the given vnum from the room.

def send(self, mssg)
Send a message to every character in this room. A newline will be appended to the
end of the message.

def dig(self, dir, dest)
Creates a new exit in the specified direction to the destination. Dest can be another
room, or a room key.

def fill(self, dir)
Delete an exit in the specified direction

23

def exit(self, dir)
Returns the exit in the specified direction. None if none exists.

def isinstance(self, prototype)
Returns whether or not the room is inherited from the given prototype.

def edesc(self, words, desc)
Adds a new extra description to the room, tied to the specified words. Words must
be a comma-separated list of things that can be looked at in the room, which will
show the extra description.

def add cmd(self, cmd, abbrev, func, min pos, max pos, group, mob ok, interrupts)
The same as add cmd as described in the documentation for the mud module, but
the command only works in the room.

4.5.2 Variables

Rooms have various variables associated with them. Some are settable, and some
are not. below is a list of those variables, and details of what each is for.

Variable Settable Description
name

√
The room’s name

desc
√

The paragraph description of the room when looked at.
terrain

√
The type of terrain the room is.

uid The room’s unique identification number.
class The room’s most immediate prototype.
chars A list of characters within the room.
objs A list of objects within the room.
contents Same as objs.
exnames A list of the exit names this room has.

4.6 Object Module

A module containing object-related utilities (e.g. building a list of all objects in game,
loading a new object instance to game, counting occurrences of an object instance
in game, etc...). This module is also home to the Obj class, which is the Python
representation of NakedMud’s objects. For importing purposes, this module’s name
is obj.

24

4.6.1 Methods

def obj list(self)
Returns a list of all the objects currently in the game.

def load obj(self, prototype, where, equipto = None)
Load an instance of the object with the given prototype into the game. Where can
either be a room or a room key, a container, or a character. If where is a character,
equipto can be None to load the object to the character’s inventory, an empty string
to equip the object to the character in the first available slots, or a comma-separated
list of body positions the object should equip to. Returns a pointer to the object
just loaded into the game.

def count objs(self, prototype, where = obj list())
Returns a count of all the objects descended from the prototype in the given scope.
Where can be a room or room key, a container, or a character. If where is not
supplied, every object in the game is checked.

4.7 Obj Class

This class is a Python wrapper around the OBJ DATA C struct. Contains various
methods and variables for interacting with the actual object that this Python class
wraps around. The Obj class is contained within the obj module.

4.7.1 Methods

def init (self, vnum)
The initializer for the Obj class. Takes in a uid for the obj we wish to create a
Class around. Note that objects cannot be loaded into game by calling the Obj
init function. To do this, you will want to use the load obj method in the Obj
module.

def attach(self, script vnum)
Attach a script with the given vnum to the object.

def detach(self, script vnum)
Detach a script with the given vnum from the object.

25

def isinstance(self, prototype)
Returns whether or not the object is inherited from the given prototype.

def istype(self, type)
Returns whether or not the object is of the given item type (i.e. container, furni-
ture).

def settype(self, type)
Makes the object an instance of the specified item type.

def edesc(self, words, desc)
Attaches a new extra description to the object. Words is a comma-separated list of
words that will show the extra description. Desc is the extra description.

4.7.2 Variables

Objects have various variables associated with them. Some are settable, and some
are not. below is a list of those variables, and details of what each is for.

Variable Settable Description
name

√
The object’s name

mname
√

The object’s name when multiple instances are in the room.
desc

√
The paragraph description of the object when looked at.

rdesc
√

The description of the object when seen in a room.
mdesc

√
The object’s room description when multiple instances are in the room.

keywords
√

A comma-separated list of named the object can be referenced by.
contents A list of objects contained within this one.
objs Same as contents
chars A list of people sitting on this object.
weight

√
The weight of the object, excluding contents.

uid The universal identification number for the object.
prototypes A comma-separated list of the prototypes this object inherits from.
bits

√
A comma-separated list of bits currently set on this object.

carrier
√

The person who currently has this item in their inventory.
room

√
The room this object is currently in.

container
√

The container this object is currently in.

26

4.8 Event Module

Events are basically delayed calls to functions. Events could have a wide range
of uses. For instance, events might be useful for preparing reboots or copyovers
at prescheduled times, global quests, recurrent calls to functions (e.g. a combat
handler), etc.... The event module is very simple, containing only 3 methods. It is
imported as event.

4.8.1 Methods

def start event(owner, delay, func, data = None, arg = None)
Prepares to call func in delay seconds. Func must be a python method that takes
three arguments: the event’s owner, the event’s data, and the event’s argument. The
data and arg variables are optional, and can have values of None.

def start update(owner, delay, method, data = None, arg = None)
Exactly the same as start event, but the event will be added back into the event
handler whenever it completes.

def interrupt events involving(thing)
interrupts any events that have thing as their owner.

4.9 Storage Module

The storage module has has two classes - StorageSet and StorageList. These are
wrappers for C storage set and storage lists, respectively. StorageSets are designed
to hold and convert between integers, strings, and double values (i.e. the types that
make up everything in the game). Storagelists are lists of StorageSets.

4.9.1 Storage Set Methods

def init (fname = None)
Create a new storage set. If fname is provided, parse the storage set from the filename
provided.

def readString(key)
Read the string value associated with the given key in the storage set. Keys must

27

always be strings.

def readInt(key)
Read the integer value associated with the given key in the storage set. Keys must
always be strings.

def readDouble(key)
Read the double value associated with the given key in the storage set. Keys must
always be strings.

def readBool(key)
Read the boolean value associated with the given key in the storage set. Keys must
always be strings.

def readList(key)
Read the StorageList value associated with the given key in the storage set. Keys
must always be strings.

def readSet(key)
Read the StorageSet value associated with the given key in the storage set. Keys
must always be strings.

def storeString(key, val)
Store a key:string-val pair in the storage set. Keys must always be strings.

def storeInt(key, val)
Store a key:integer-val pair in the storage set. Keys must always be strings.

def storeDouble(key, val)
Store a key:double-val pair in the storage set. Keys must always be strings.

def storeBool(key, val)
Store a key:boolean-val pair in the storage set. Keys must always be strings.

def storeList(key, val)
Store a key:list-val pair in the storage set. Keys must always be strings.

def storeSet(key, val)
Store a key:set-val pair in the storage set. Keys must always be strings.

def write(fname)
Write the storage set to a file with the given name.

def close()
Close and free the storage set from memory, along with all storage sets and storage

28

lists stored within the set being closed.

def contains(key)
Returns true if the storage set contains a value with the given key.

4.9.2 Storage List Methods

def init ()
Create a new storage list.

def sets()
Returns a list of all the storage sets contained within this storage list.

def add(set)
Add a new storage set to the storage list.

4.10 Auxiliary Data Module

The Auxiliary Module has a single method called install, which handles all of the
installation of auxiliary data onto the basic data types.

def install(name, class, installs on)
The name parameter is the name the auxiliary data will be known as for whatever it
is installed on. The class parameter is the class that embodies this auxiliary data. It
should contain an init method that takes a storage set as an optional argument, a
copy method, a copyTo method, a store method, and a read method. The installs on
parameter is a comma-separated list of things that the auxiliary data will install
onto. Possible values in this list include ”room”, ”character”, and ”object”.

29

