
Extending NakedMud:
An Introduction to Modules, Storage Sets, and

Auxiliary Data

Geoff Hollis
hollisgf@email.uc.edu

November 18, 2006

1

Contents

1 Introduction 3

2 Modules 4
2.1 Preparing to Program . 4
2.2 Programming a Mail Module . 7
2.3 Summary . 12

3 Storage Sets 13
3.1 Getting Up To Speed . 13
3.2 Storage Set Basics . 14
3.3 Summary . 18

4 Auxiliary Data 19
4.1 Getting Up To Speed . 19
4.2 Auxiliary Data Basics . 19
4.3 Summary . 25

5 Conclusion 26

A Mail Module Code, First Draft 27

B Mail Module Code, Second Draft 32

C Mail Module Code, Third Draft 39

2

1 Introduction

There are three aspects of NakedMud’s code that must be understood to efficiently
build a mud using the codebase: modules, auxiliary data, and storage sets. Mod-
ules and auxiliary data allow programmers to organize their work by concept (e.g.
combat-related functions and variables, magic-related stuff, etc...) rather than by
data structure (e.g. all character variables, all room variables, etc...). I believe such
conceptual organization make the processes of debugging, maintenance, and distri-
bution much easier than they would otherwise be. The third aspect - storage sets
- is an attempt to provide a general format for saving and loading data from files,
and eliminate much of the legwork that comes with reading and writing to files. It
is also (more importantly) an attempt to ensure the addition of new information to
data structures in the MUD never results in formatting conflicts within files. This
manual is mainly a tutorial for how to use modules, auxiliary data, and storage sets.
There are three sections to this manual - one for each topic. The three sections build
on top of eachother, but each one can be read and used independently with the help
of code supplied in the appendices.

3

2 Modules

Almost all new extensions to NakedMud are expected to be added through modules.
In its most basic form, a module is a directory that contains src files that are all
united in some high-level, conceptual manner. So for instance, you might have a
module that contains all of the mechanics for combat, or another module for all the
magic mechanics, or maybe a module that adds commands with names that give
your MUD the look&feel of a famous codebase like Circle, or ROM. The main point
is that modules organize the source code of your mud by concept.

It is good practice to organize your code by concept rather than lumping all your
additions into the main src directory. When you need to go back and debug systems
within your MUD, things will be easier to find if everything is organized by system or
concept. On the same token, code is much easier to maintain and extend if everything
you need relating to some concept you are changing is spatially localized. And as
an added benefit, if you would like to distribute new systems you have written,
you can simply package up the directory containing your module. No more work is
involved.

Modules are very easy to set up. Adding a module is basically like you would
normally add code, except you have to make a new directory for everything that will
be included in your module, and let the MUD know you are adding a new module.
Here, we will walk through the creation of a module that allows players to send and
receive mail. In later sections, it will be built on to demonstrate how storage sets
and auxiliary data work.

2.1 Preparing to Program

Before we can begin programming the mail module, we have to make a directory for
it. We will also have to change a few things in the makefile and gameloop to ensure
the module will be compiled and loaded properly.

Enter your src directory, and make a new folder for the mail module. If you are in
a terminal window, you can make the new directory with mkdir mail. You will now
have to let your Makefile know that the new module exists. Open up Makefile in
your src directory, and look for the line where optional modules are added to the
variable, MODULES. The line you are searching for will look something like:

optional modules go on this line

4

MODULES += time socials alias help

To this list, add the name of the new module you just created. Now, when the
Makefile compiles your MUD, it will know that you have installed a new module
called mail, and it will go into that directory and compile all the files within it. Well,
almost. What actually happens is the Makefile goes into the module directory and
looks for another makefile that lists off all the source files that need to be compiled
for that module, along with all the libraries and compiler flags that are required for
the new code to work. So, let’s make a new makefile in the module directory to let
the main makefile know which source files we will be editing. We do not have to
worry about adding libraries or compiler flags for this module, as it is going to be
very simple. In your module directory, create a file called module.mk and edit it. We
will only be working with one source file in this directory, and it will be called mail.c.
To let the main makefile know that this source file will be made, add the following
lines of code to your module.mk file:

include all of the source files contained in this module

SRC += mail/mail.c

In general, the path relative to the main src directory for all source files in your
module should be added to the SRC variable.

Now that your MUD knows that your module exists, you will have to take some
steps to initialize all of the new features your module will add to the MUD. This
is traditionally done by adding an init xxx() function to your module, and calling
it when the MUD first boots up. Let us create an init function and fill it with
a nonsense message until we actually have code to initialize. In your new module
directory, create and edit a file called mail.c. To it, add the following bit of code:

// include all the header files we will need from the MUD core

#include "../mud.h"

#include "../utils.h" // for get_time()

#include "../character.h" // for handling characters sending mail

#include "../save.h" // for char_exists()

#include "../object.h" // for creating mail objects

#include "../handler.h" // for giving mail to characters

// include headers from other modules that we require

#include "../editor/editor.h" // for access to sockets’ notepads

// include the headers for this module

5

#include "mail.h"

// boot up the mail module

void init_mail(void) {

printf("Nothing in the mail module yet!");

}

You will notice that we include a header called mail.h, which has not yet been created.
Let’s create the header and add all of the functions that source code outside of the
mail module should have access to. In your new module directory, create and edit a
file called mail.h. To it, add the following bit of code:

#ifndef MAIL_H

#define MAIL_H

// this function should be called when the MUD first boots up.

// calling it will initialize the mail module for use.

void init_mail(void);

#endif // MAIL_H

Then, let us call the init function where all the other modules’ init functions are
called. This is a two-step process. We first have to make a define in mud.h that
informs the rest of the MUD code that the module is installed. So, edit mud.h in the
main src directory. Near the very start of the file, you will see lists of defined of the
form MODULE XXX. With the rest of your optional modules, add the line:

#define MODULE_MAIL

We then need to go into gameloop.c and call the init function. Edit gameloop.c in
your main src directory. At the end of the header files, you will see headers for
optional modules. Add another entry for your mail module:

#ifdef MODULE_MAIL

#include "mail/mail.h"

#endif

Now, go down further to where all of the modules are initialized. This will be in the
main() function, right before the gameworld is created. Add your init function to
the list of other init functions:

#ifdef MODULE_MAIL

log_string("Initializing mail system.");

init_mail();

6

#endif

Notice how both the include for our mail.h header, and the call to our init function
for the mail module are wrapped around #ifdef and #endif statements? This is to
allow us to easily pull out the mail module if we ever want to. If we ever want to turn
off the module, all we will have to do is go into mud.h and comment out the line,
#define MODULE MAIL. For all intents and purposes within the code, the mail
module no longer exists when this line is commented out. We have now completed
all of the prep work needed before we can start writing the mail module.

2.2 Programming a Mail Module

To start, we will aim for something simple. The first incarnation of our mail module
will allow players to send written messages to one another. Sent mail will not be
persistent (it will not save over reboots or crashes). That feature will be postponed
until section 3: Storage Sets.

To start, we will have to create a new structure to represent a piece of sent mail.
Add this to mail.c:

typedef struct {

char *sender; // name of the char who sent this mail

char *time; // the time it was sent at

BUFFER *mssg; // the accompanying message

} MAIL_DATA;

Now, let’s write some functions for a couple procedures we will be needing down the
line - the creation and deletion of mail:

// create a new piece of mail.

MAIL_DATA *newMail(CHAR_DATA *sender, const char *mssg) {

MAIL_DATA *mail = malloc(sizeof(MAIL_DATA));

mail->sender = strdup(charGetName(sender));

mail->time = strdup(get_time());

mail->mssg = newBuffer(strlen(mssg));

bufferCat(mail->mssg, mssg);

return mail;

}

// free all of the memory that was allocated to make this piece of mail

7

void deleteMail(MAIL_DATA *mail) {

if(mail->sender) free(mail->sender);

if(mail->time) free(mail->time);

if(mail->mssg) deleteBuffer(mail->mssg);

free(mail);

}

Now that the basic steps for creating and deleting mail is complete, we can set up
some commands to allow players to send mail:

// mails a message to the specified person. This command must take the

// following form:

// mail <person>

//

// The contents of the character’s notepad will be used as the body of the

// message. The character’s notepad must not be empty.

COMMAND(cmd_mail) {

// make sure the character exists

if(!char_exists(arg))

send_to_char(ch, "Noone named %s is registered on %s.\r\n",

arg, "<insert mud name here>");

// make sure we have a socket - we’ll need access to its notepad

else if(!charGetSocket(ch))

send_to_char(ch, "Only characters with sockets can send mail!\r\n");

// make sure our notepad is not empty

else if(!*bufferString(socketGetNotepad(charGetSocket(ch))))

send_to_char(ch, "Your notepad is empty. "

"First, try writing something with {cwrite{n.\r\n");

// the character exists. Let’s parse the items and send the mail

else {

MAIL_DATA *mail = newMail(ch, bufferString(socketGetNotepad(charGetSocket(ch))));

// if we had some way of storing mail, we’d now do that. But since we

// don’t, let’s just delete the mail.

//***********

// FINISH ME

//***********

deleteMail(mail);

8

// let the character know we’ve sent the mail

send_to_char(ch, "You send a message to %s.\r\n", arg);

}

}

We will also want to add this new command to a list of all the commands in the
mud. So, let’s go down to init mail() and do that:

// boot up the mail module

void init_mail(void) {

// add all of the commands that come with this module

add_cmd("mail", NULL, cmd_mail, POS_STANDING, POS_FLYING,

"player", FALSE, TRUE);

}

The first incarnation of our module is just about complete! The only thing we need
now is a way to store mail that has been sent. To do this, we will need some way of
mapping characters to their received mail, and a command for them to access that
mail. Let us create a hashtable to map mail recipients to their mail. We will do this
at the top of mail.c, just before we create the MAIL DATA structure:

// maps charName to a list of mail they have received

HASHTABLE *mail_table = NULL;

We will also need to create this hashtable in our init mail() function, so go down to
that and perform the initialization for a hashtable:

// boot up the mail module

void init_mail(void) {

// initialize our mail table

mail_table = newHashtable();

// add all of the commands that come with this module

add_cmd("mail", NULL, cmd_mail, POS_STANDING, POS_FLYING,

"player", FALSE, TRUE);

}

Earlier, we left cmd mail unfinished, because we had no way to store mail. Now that
we have a hashtable for performing this function, let’s go back to cmd mail and fill
in the unfinished part:

// the character exists. Let’s parse the items and send the mail

9

else {

MAIL_DATA *mail = newMail(ch, bufferString(socketGetNotepad(charGetSocket(ch))));

// see if the receiver already has a mail list

LIST *mssgs = hashGet(mail_table, arg);

// if he doesn’t, create one and add it to the hashtable

if(mssgs == NULL) {

mssgs = newList();

hashPut(mail_table, arg, mssgs);

}

// add the new mail to our mail list

listPut(mssgs, mail);

// let the character know we’ve sent the mail

send_to_char(ch, "You send a message to %s.\r\n", arg);

}

It’s all well and good being able to send mail, but we still need a way for people to
receive their mail. Let’s write the command for performing that function now:

// checks to see if the character has any mail. If he does, convert each piece

// of mail into an object, and transfer them all into the character’s inventory.

COMMAND(cmd_receive) {

// Remove the character’s mail list from our mail table

LIST *mail_list = hashRemove(mail_table, charGetName(ch));

// make sure the list exists

if(mail_list == NULL || listSize(mail_list) == 0)

send_to_char(ch, "You have no new mail.\r\n");

// hand over all of the mail

else {

// go through each piece of mail, make an object for it,

// and transfer the new object to us

LIST_ITERATOR *mail_i = newListIterator(mail_list);

MAIL_DATA *mail = NULL;

ITERATE_LIST(mail, mail_i) {

OBJ_DATA *obj = newObj();

10

objSetName (obj, "a letter");

objSetKeywords (obj, "letter, mail");

objSetRdesc (obj, "A letter is here.");

objSetMultiName (obj, "A stack of %d letters");

objSetMultiRdesc(obj, "A stack of %d letters are here.");

bprintf(objGetDescBuffer(obj),

"Sender : %s\r\n"

"Date sent: %s\r\n"

"%s", mail->sender, mail->time, bufferString(mail->mssg));

// give the object to the character

obj_to_game(obj);

obj_to_char(obj, ch);

} deleteListIterator(mail_i);

// let the character know how much mail he received

send_to_char(ch, "You receive %d letter%s.\r\n",

listSize(mail_list), (listSize(mail_list) == 1 ? "" : "s"));

}

// delete the mail list, and all of its contents

if(mail_list != NULL) deleteListWith(mail_list, deleteMail);

}

Like with cmd mail, we will also have to add this new command to the list of all
commands in the mud. Go down to init mail() and add it in below our other com-
mand:

// add all of the commands that come with this module

add_cmd("mail", NULL, cmd_mail, POS_STANDING, POS_FLYING,

"player", FALSE, TRUE);

add_cmd("receive", NULL, cmd_receive, POS_STANDING, POS_FLYING,

"player", FALSE, TRUE);

There, we’re all done! You now have a great, basic mail module. We could probably
add lots to this module, like parcels of items, fees for sending mail, checks to make
sure mail is only sent at mailboxes, etc... but for our purposes of demonstrating how
modules work, this will suffice. The rest of the features will be left to you as an
exercise.

11

2.3 Summary

You have been provided with a hands on demonstration on how new modules are
created. This topic covered lots of ground. You are not expected to immediately
remember everything that has been covered so far, but going back through the entire
tutorial to reread details about the module creation process would definitely be an
onerous task. As such, a short reference for the module creation process has been
outlined below:

• Create a directory for your module

• Create your directory’s module.mk file

• Add an entry for the module to the main Makefile module list

• Add a define for your module in mud.h

• Call your module’s init function in gameloop.c

• Write the code for your module

12

3 Storage Sets

Storage sets are a big part of NakedMud. They serve a few important purposes:
They simplify the process of saving data from files by eliminating your need to come
up with formatting schemes for your flatfiles. They also eliminate your need to write
file parsers to extract data from files; the process of retrieving information from a
file is reduced to querying for the value of some key. As we will learn later, they also
play an integral role in the process of saving and loading auxiliary data.

In this section, we will learn the ropes of storage sets. We’ll see how to store and
read lists and strings. The other data types storage sets can deal with (ints, bools,
doubles, longs) are handled in the exact same way as strings, except with different
function names. After this tutorial, you should be able to extrapolate how these
other data types interact with storage sets. In the next section on auxiliary data, we
will examine how storage sets work in conjunction with auxiliary data.

3.1 Getting Up To Speed

If you have not already performed the tutorial on modules, you will need to do a
couple things before you can go through the storage set tutorial. If you have already
performed the tutorial on modules, disregard this section and move onto the next
one.

• In your src directory, make a new directory called mail

• Examine appendix A. For each of the 3 files you see, add it and its contents to
the mail directory you just created

• Edit the Makefile in your src directory. To the line listing off your optional
modules, add mail

• Edit mud.h and add #define MODULE MAIL to the list of other module de-
fines you have

• Edit gameloop.c and add #include ”mail/mail.h” to the list of optional module
headers in the same fashion it is added for the other module headers

• Still in gameloop.c, search for the init functions of your other modules and add
your init mail() function in the same way the init() functions for your other
modules is added

13

3.2 Storage Set Basics

In the section on modules, we designed a ’proof of concept’ for a mail system. One
feature we did not add was the ability for unreceived mail to be persistent. If the
MUD ever crashed or rebooted, all mail not yet received would be lost. This, of
course, is highly undesirable. We will now build on our mail module, and demonstrate
how make mail persistent with the aid of storage sets.

The first thing we will need to do is add the header for interacting with storage sets.
Let’s do this where we include all the other headers we need for interacting with
core features of the MUD. We’ll add the new header right after we add the handler.h
header:

#include "../handler.h" // for giving mail to characters

#include "../storage.h" // for saving/loading mail

Next, we will need to define a file where mail will be stored when the mud is down.
The MUD’s lib directory seems like an ideal candidate directory. Why don’t we
define where mail will be saved at the top of our mail.c file, where we define the
hashtable for holding mail:

// this is the file we will save all unreceived mail in, when the mud is down

#define MAIL_FILE "../lib/misc/mail"

// maps charName to a list of mail they have received

HASHTABLE *mail_table = NULL;

Two things we will need are functions for converting both ways between MAIL DATA
and STORAGE SETS. By convention, these functions are called xxxStore and xxxRead,
where xxx is what we are trying to convert to and from a STORAGE SET. Let’s get
those functions set up next, just below the newMail and deleteMail functions:

// parse a piece of mail from a storage set

MAIL_DATA *mailRead(STORAGE_SET *set) {

// allocate some memory for the mail

MAIL_DATA *mail = malloc(sizeof(MAIL_DATA));

mail->mssg = newBuffer(1);

// read in all of our values

mail->sender = strdup(read_string(set, "sender"));

mail->time = strdup(read_string(set, "time"));

14

bufferCat(mail->mssg, read_string(set, "mssg"));

return mail;

}

// represent a piece of mail as a storage set

STORAGE_SET *mailStore(MAIL_DATA *mail) {

// create a new storage set

STORAGE_SET *set = new_storage_set();

store_string(set, "sender", mail->sender);

store_string(set, "time", mail->time);

store_string(set, "mssg", bufferString(mail->mssg));

return set;

}

Now that we have the ability to store and read mail, let’s create two functions for
actually doing the storing and reading:

// saves all of our unreceived mail to disk

void save_mail(void) {

// make a storage set to hold all our mail

STORAGE_SET *set = new_storage_set();

// make a list of name:mail pairs, and store it in the set

STORAGE_SET_LIST *list = new_storage_list();

// iterate across all of the people who have not received mail, and

// store their names in the storage list, along with their mail

HASH_ITERATOR *mail_i = newHashIterator(mail_table);

const char *name = NULL;

LIST *mail = NULL;

ITERATE_HASH(name, mail, mail_i) {

// create a new storage set that holds each name:mail pair,

// and add it to our list of all name:mail pairs

STORAGE_SET *one_pair = new_storage_set();

store_string (one_pair, "name", name);

store_list (one_pair, "mail", gen_store_list(mail, mailStore));

storage_list_put(list, one_pair);

} deleteHashIterator(mail_i);

15

// make sure we add the list of name:mail pairs we want to save

store_list(set, "list", list);

// now, store our set in the mail file, and clean up our mess

storage_write(set, MAIL_FILE);

storage_close(set);

}

// loads all of our unreceived mail from disk

void load_mail(void) {

// parse our storage set

STORAGE_SET *set = storage_read(MAIL_FILE);

// make sure the file existed and wasn’t empty

if(set == NULL) return;

// get the list of all name:mail pairs, and parse each one

STORAGE_SET_LIST *list = read_list(set, "list");

STORAGE_SET *one_pair = NULL;

while((one_pair = storage_list_next(list)) != NULL) {

const char *name = read_string(one_pair, "name");

LIST *mail = gen_read_list(read_list(one_pair, "mail"), mailRead);

hashPut(mail_table, name, mail);

}

// Everything is parsed! Now it’s time to clean up our mess

storage_close(set);

}

This code may be a bit ugly to the untrained eye. However, there are some very useful
nuggets of knowledge buried within it. If you are having troubles understanding what
is going on, it is highly suggested that you take a few minutes to trace through these
two functions and figure out what is going on. Once we are completely done this
section, it may also help to write a couple mails to yourself and examine what the
mail file looks like. The file’s structure might help elucidate many of the things that
are going on in these two functions.

Ok, we are on the home stretch. Now that our save and load functions are written,

16

we have to make sure they are called appropriately. We will want to load up unread
mail when the mail module initialized, and we will want to make sure we update the
contents of the mail file whenever mail is sent or received. Why don’t we add those
bits of code.

At the end of cmd mail, make sure mail is saved:

// let the character know we’ve sent the mail

send_to_char(ch, "You send a message to %s.\r\n", arg);

// save all unread mail

save_mail();

At the end of cmd receive, make sure mail is saved:

// let the character know how much mail he received

send_to_char(ch, "You receive %d letter%s.\r\n",

listSize(mail_list), (listSize(mail_list) == 1 ? "" : "s"));

// update the unread mail in our mail file

save_mail();

Finally, ensure we load up all unread mail when we initialize the module:

// boot up the mail module

void init_mail(void) {

// initialize our mail table

mail_table = newHashtable();

// parse any unread mail

load_mail();

That’s it! Unreceived mail will now be persistent across reboots and crashes. You
may have noticed that saving of mail is rather inefficient; every time someone receives
a mail or sends a mail, we have to re-save all unreceived mails. Ideally, we would
like to change it so we have to re-save as little information as possible. That is the
problem we will tackle in the section on auxiliary data.

17

3.3 Summary

In this section, we have learned the basics of storage sets. Storage sets can be a bit
tricky to understand at first. If you are having troubles completely understanding the
code presented in this section, it is strongly suggested you spend some time reading
over it and understanding how it works. It may also help looking at the files that
storage sets generate after one is written to disk. If you plan on adding anything new
to NakedMud, it is almost mandatory that you understand how storage sets work.
However, Once you figure out how they work, you will be glad you did. They are
very helpful data structures.

18

4 Auxiliary Data

Auxiliary Data is, perhaps, the most important part of NakedMud’s design. Aux-
iliary Data allows you to add new variables to the various datatypes NakedMud
handles within the game (objects, rooms, mobiles, accounts, sockets) without even
touching the files that house those data structures. The biggest gain from this is the
ability to modularize your code by what it is intended to do; all of the code related
to combat - including new variables that must be created - can stay in one module.
As was mentioned in the introduction the modules section, this will undoubtedly
help with your ability to debug, maintain, and distribute pieces of your code in the
future. Designing new auxiliary data is very simple, but it does require a bit of effort
if you have not done it in the past. This tutorial will walk you through the steps of
writing and installing new auxiliary data.

4.1 Getting Up To Speed

If you have already completed the tutorial on modules, and that is the only tutorial
in this guide you have performed, you can skip this subsection, as it does not apply
to you.

If you have completed the tutorial on storage sets, you will have to make some
modifications to your code. As we discussed at the end of the storage sets section,
the way saving is performed is rather inefficient, and we will attempt to address that
problem within this section. You will need to replace your mail.c file with the mail.c
found in appendix A.

If you have not yet completed any of the tutorials in this guide, you will need to
do a couple things before you can go through the auxiliary data tutorial. All of the
steps you must take are outlined in section 3.1 - the Getting Up To Speed section for
storage sets.

Once you have figured out which set of changes apply to you, carry on with the next
subsection in the auxiliary data tutorial.

4.2 Auxiliary Data Basics

In the section on modules, we designed a ’proof of concept’ for a mail system. One
feature we did not add was the ability for unreceived mail to be persistent. If

19

the MUD ever crashed or rebooted, all mail not yet received would be lost. This
inconvenience was addressed in the section on storage sets. However, we ran into
another problem with the saving procedure being inefficient: to save any change to
someone’s unreceived mail status, we effectively had to re-save everyone’s unreceived
mail. This section will address the problem by attaching a character’s unread mail
to that character’s actual data structure. Now, whenever we want to the unread mail
for a character, we will only have to save that character, and not all unread mail in
existence.

The first thing we will need to do is add the headers for interacting with auxiliary
data and storage sets. Let’s do this where we include all the other headers we need
for interacting with core features of the MUD. We’ll add the new headers right after
we add the handler.h header:

#include "../handler.h" // for giving mail to characters

#include "../storage.h" // for saving/loading auxiliary data

#include "../auxiliary.h" // for creating new auxiliary data

#include "../world.h" // for loading offline chars receiving mail

Because we will save unread mail as auxiliary data within character data, we will no
longer need a hashtable for keeping everything stored. Therefore, let us search and
destroy all references to the mail table:

Right after we finish including all of our headers, delete:

// maps charName to a list of mail they have received

HASHTABLE *mail_table = NULL;

In cmd mail, delete the entire section within the last else statement:

MAIL_DATA *mail = newMail(ch, bufferString(socketGetNotepad(charGetSocket(ch))));

// see if the receiver already has a mail list

LIST *mssgs = hashGet(mail_table, arg);

// if he doesn’t, create one and add it to the hashtable

if(mssgs == NULL) {

mssgs = newList();

hashPut(mail_table, arg, mssgs);

}

// add the new mail to our mail list

20

listPut(mssgs, mail);

// let the character know we’ve sent the mail

send_to_char(ch, "You send a message to %s.\r\n", arg);

At the very start of cmd receive, remove the reference to hashRemove, and for the
time being, set mail list to NULL:

// Remove the character’s mail list from our mail table

LIST *mail_list = hashRemove(mail_table, charGetName(ch));

Finally, remove our creation of the mail table in init mail:

// initialize our mail table

mail_table = newHashtable();

Before we start writing our auxiliary data, we are going to have to provide a couple
functions for handling the saving, reading, and copying of mail. Right after newMail
and deleteMail, add these 3 new functions:

// parse a piece of mail from a storage set

MAIL_DATA *mailRead(STORAGE_SET *set) {

// allocate some memory for the mail

MAIL_DATA *mail = malloc(sizeof(MAIL_DATA));

mail->mssg = newBuffer(1);

// read in all of our values

mail->sender = strdup(read_string(set, "sender"));

mail->time = strdup(read_string(set, "time"));

bufferCat(mail->mssg, read_string(set, "mssg"));

return mail;

}

// represent a piece of mail as a storage set

STORAGE_SET *mailStore(MAIL_DATA *mail) {

// create a new storage set

STORAGE_SET *set = new_storage_set();

store_string(set, "sender", mail->sender);

store_string(set, "time", mail->time);

store_string(set, "mssg", bufferString(mail->mssg));

return set;

21

}

// copy a piece of mail. This will be needed by our auxiliary

// data copy functions

MAIL_DATA *mailCopy(MAIL_DATA *mail) {

MAIL_DATA *newmail = malloc(sizeof(MAIL_DATA));

newmail->sender = strdup(mail->sender);

newmail->time = strdup(mail->time);

newmail->mssg = bufferCopy(mail->mssg);

return newmail;

}

Now we’re ready to start writing our auxiliary data. Auxiliary Data require 7 things:
a new structure that is the auxiliary data, a function that constructs the auxiliary
data, a function that deletes the auxiliary data, a function that copies the auxiliary
data, a function that copies the auxiliary data to another instance of the same
auxiliary data, a function that reads the auxiliary data from a storage set, and a
function that writes the auxiliary data to a storage set. Below, we lay out all of
those things. There is quite a bit of code but, as you will notice, it is all very simple
(perhaps with the exception of the read and write functions). Right below the the
mailCopy function, add the following bit of code:

// our mail auxiliary data.

// Holds a list of all the unreceived mail a person has

typedef struct {

LIST *mail; // our list of unread mail

} MAIL_AUX_DATA;

// create a new instance of mail aux data, for us to put onto a character

MAIL_AUX_DATA *newMailAuxData(void) {

MAIL_AUX_DATA *data = malloc(sizeof(MAIL_AUX_DATA));

data->mail = newList();

return data;

}

// delete a character’s mail aux data

void deleteMailAuxData(MAIL_AUX_DATA *data) {

if(data->mail) deleteListWith(data->mail, deleteMail);

free(data);

22

}

// copy one mail aux data to another

void mailAuxDataCopyTo(MAIL_AUX_DATA *from, MAIL_AUX_DATA *to) {

if(to->mail) deleteListWith(to->mail, deleteMail);

if(from->mail) to->mail = listCopyWith(from->mail, mailCopy);

else to->mail = newList();

}

// return a copy of a mail aux data

MAIL_AUX_DATA *mailAuxDataCopy(MAIL_AUX_DATA *data) {

MAIL_AUX_DATA *newdata = newMailAuxData();

mailAuxDataCopyTo(data, newdata);

return newdata;

}

// parse a mail aux data from a storage set

MAIL_AUX_DATA *mailAuxDataRead(STORAGE_SET *set) {

MAIL_AUX_DATA *data = malloc(sizeof(MAIL_AUX_DATA));

data->mail = gen_read_list(read_list(set, "mail"), mailRead);

return data;

}

// represent a mail aux data as a storage set

STORAGE_SET *mailAuxDataStore(MAIL_AUX_DATA *data) {

STORAGE_SET *set = new_storage_set();

store_list(set, "mail", gen_store_list(data->mail, mailStore));

return set;

}

Finally, we will want to ensure this new auxiliary data exists on characters. When
our mail module boots up, we will want to install this new bit of auxiliary data:

// boot up the mail module

void init_mail(void) {

// install our auxiliary data

auxiliariesInstall("mail_aux_data",

newAuxiliaryFuncs(AUXILIARY_TYPE_CHAR,

newMailAuxData, deleteMailAuxData,

23

mailAuxDataCopyTo, mailAuxDataCopy,

mailAuxDataStore, mailAuxDataRead));

// add all of the commands that come with this module

add_cmd("mail", NULL, cmd_mail, POS_STANDING, POS_FLYING,

"player", FALSE, TRUE);

add_cmd("receive", NULL, cmd_receive, POS_STANDING, POS_FLYING,

"player", FALSE, TRUE);

}

Our mail auxiliary data is installed and completely functional! Now, we will want
to go back to cmd mail and cmd receive to ensure they use the auxiliary data in
replacement of the hashtable we used before. Let’s start with the new code for
cmd mail. In the last else block, add the following bit of code:

// create the new piece of mail

MAIL_DATA *mail = newMail(ch, bufferString(socketGetNotepad(charGetSocket(ch))));

// get a copy of the player, send mail, and save

CHAR_DATA *recv = get_player(arg);

send_to_char(recv, "You have new mail.\r\n");

// let’s pull out the character’s mail aux data, and add the new piece

MAIL_AUX_DATA *maux = charGetAuxiliaryData(recv, "mail_aux_data");

listPut(maux->mail, mail);

save_player(recv);

// get rid of our reference, and extract from game if need be

unreference_player(recv);

// let the character know we’ve sent the mail

send_to_char(ch, "You send a message to %s.\r\n", arg);

Now, we will want to make it so players can receive their unread mail. At the very
start of cmd receive, add the following bit of code:

COMMAND(cmd_receive) {

// Remove the character’s mail list from our mail table

MAIL_AUX_DATA *maux = charGetAuxiliaryData(ch, "mail_aux_data");

LIST *mail_list = maux->mail;

24

// replace our old list with a new one. Our old one will be deleted soon

maux->mail = newList();

There, we’re done! Players can now send and receive mail.

4.3 Summary

In this section, we have learned the basics of using auxiliary data. In our tutorial on
storage sets, we were able to make unreceived mail persistent, but loading and saving
was very inefficient. In this tutorial, we addressed the efficiency problem by saving
unread mail on the character the mail belongs to. Auxiliary Data does require a bit
of programming, but once you get the hang of it, you will realize it is very routine
programming - the bulk of which you can probably copy from a template like the
one provided in this tutorial or any other module that employs the use of auxiliary
data.

25

5 Conclusion

Throughout this manual, we have learned the basics of modules, storage sets, and
auxiliary data - three fundamental aspects of NakedMud. With a bit more practical
experience, you will know all there is to know about these three topics. Hopefully
this tutorial has helped you understand enough of the basics so that you will not
have too much trouble extending NakedMud with new game content.

26

A Mail Module Code, First Draft

##

module.mk

##

include all of the source files contained in this module

SRC += mail/mail.c

//***

// mail.h

//***

#ifndef MAIL_H

#define MAIL_H

// this function should be called when the MUD first boots up.

// calling it will initialize the mail module for use.

void init_mail(void);

#endif // MAIL_H

//***

// mail.c

//***

// include all the header files we will need from the MUD core

#include "../mud.h"

#include "../utils.h" // for get_time()

#include "../character.h" // for handling characters sending mail

#include "../save.h" // for char_exists()

#include "../object.h" // for creating mail objects

#include "../handler.h" // for giving mail to characters

// include headers from other modules that we require

#include "../editor/editor.h" // for access to sockets’ notepads

27

// include the headers for this module

#include "mail.h"

// maps charName to a list of mail they have received

HASHTABLE *mail_table = NULL;

typedef struct {

char *sender; // name of the char who sent this mail

char *time; // the time it was sent at

BUFFER *mssg; // the accompanying message

} MAIL_DATA;

// create a new piece of mail.

MAIL_DATA *newMail(CHAR_DATA *sender, const char *mssg) {

MAIL_DATA *mail = malloc(sizeof(MAIL_DATA));

mail->sender = strdup(charGetName(sender));

mail->time = strdup(get_time());

mail->mssg = newBuffer(strlen(mssg));

bufferCat(mail->mssg, mssg);

return mail;

}

// free all of the memory that was allocated to make this piece of mail

void deleteMail(MAIL_DATA *mail) {

if(mail->sender) free(mail->sender);

if(mail->time) free(mail->time);

if(mail->mssg) deleteBuffer(mail->mssg);

free(mail);

}

// mails a message to the specified person. This command must take the

// following form:

// mail <person>

//

// The contents of the character’s notepad will be used as the body of the

// message. The character’s notepad must not be empty.

COMMAND(cmd_mail) {

28

// make sure the character exists

if(!char_exists(arg))

send_to_char(ch, "Noone named %s is registered on %s.\r\n",

arg, "<insert mud name here>");

// make sure we have a socket - we’ll need access to its notepad

else if(!charGetSocket(ch))

send_to_char(ch, "Only characters with sockets can send mail!\r\n");

// make sure our notepad is not empty

else if(!*bufferString(socketGetNotepad(charGetSocket(ch))))

send_to_char(ch, "Your notepad is empty. "

"First, try writing something with {cwrite{n.\r\n");

// the character exists. Let’s parse the items and send the mail

else {

MAIL_DATA *mail = newMail(ch, bufferString(socketGetNotepad(charGetSocket(ch))));

// see if the receiver already has a mail list

LIST *mssgs = hashGet(mail_table, arg);

// if he doesn’t, create one and add it to the hashtable

if(mssgs == NULL) {

mssgs = newList();

hashPut(mail_table, arg, mssgs);

}

// add the new mail to our mail list

listPut(mssgs, mail);

// let the character know we’ve sent the mail

send_to_char(ch, "You send a message to %s.\r\n", arg);

}

}

// checks to see if the character has any mail. If he does, convert each piece

// of mail into an object, and transfer them all into the character’s inventory.

COMMAND(cmd_receive) {

// Remove the character’s mail list from our mail table

LIST *mail_list = hashRemove(mail_table, charGetName(ch));

29

// make sure the list exists

if(mail_list == NULL || listSize(mail_list) == 0)

send_to_char(ch, "You have no new mail.\r\n");

// hand over all of the mail

else {

// go through each piece of mail, make an object for it,

// and transfer the new object to us

LIST_ITERATOR *mail_i = newListIterator(mail_list);

MAIL_DATA *mail = NULL;

ITERATE_LIST(mail, mail_i) {

OBJ_DATA *obj = newObj();

objSetName (obj, "a letter");

objSetKeywords (obj, "letter, mail");

objSetRdesc (obj, "A letter is here.");

objSetMultiName (obj, "A stack of %d letters");

objSetMultiRdesc(obj, "A stack of %d letters are here.");

bprintf(objGetDescBuffer(obj),

"Sender : %s\r\n"

"Date sent: %s\r\n"

"%s", mail->sender, mail->time, bufferString(mail->mssg));

// give the object to the character

obj_to_game(obj);

obj_to_char(obj, ch);

} deleteListIterator(mail_i);

// let the character know how much mail he received

send_to_char(ch, "You receive %d letter%s.\r\n",

listSize(mail_list), (listSize(mail_list) == 1 ? "" : "s"));

}

// delete the mail list, and all of its contents

if(mail_list != NULL) deleteListWith(mail_list, deleteMail);

}

// boot up the mail module

30

void init_mail(void) {

// initialize our mail table

mail_table = newHashtable();

// add all of the commands that come with this module

add_cmd("mail", NULL, cmd_mail, POS_STANDING, POS_FLYING,

"player", FALSE, TRUE);

add_cmd("receive", NULL, cmd_receive, POS_STANDING, POS_FLYING,

"player", FALSE, TRUE);

}

31

B Mail Module Code, Second Draft

##

module.mk

##

include all of the source files contained in this module

SRC += mail/mail.c

//***

// mail.h

//***

#ifndef MAIL_H

#define MAIL_H

// this function should be called when the MUD first boots up.

// calling it will initialize the mail module for use.

void init_mail(void);

#endif // MAIL_H

//***

// mail.c

//***

// include all the header files we will need from the MUD core

#include "../mud.h"

#include "../utils.h" // for get_time()

#include "../character.h" // for handling characters sending mail

#include "../save.h" // for char_exists()

#include "../object.h" // for creating mail objects

#include "../handler.h" // for giving mail to characters

#include "../storage.h" // for saving/loading mail

// include headers from other modules that we require

#include "../editor/editor.h" // for access to sockets’ notepads

32

// include the headers for this module

#include "mail.h"

// this is the file we will save all unreceived mail in, when the mud is down

#define MAIL_FILE "../lib/misc/mail"

// maps charName to a list of mail they have received

HASHTABLE *mail_table = NULL;

typedef struct {

char *sender; // name of the char who sent this mail

char *time; // the time it was sent at

BUFFER *mssg; // the accompanying message

} MAIL_DATA;

// create a new piece of mail.

MAIL_DATA *newMail(CHAR_DATA *sender, const char *mssg) {

MAIL_DATA *mail = malloc(sizeof(MAIL_DATA));

mail->sender = strdup(charGetName(sender));

mail->time = strdup(get_time());

mail->mssg = newBuffer(strlen(mssg));

bufferCat(mail->mssg, mssg);

return mail;

}

// free all of the memory that was allocated to make this piece of mail

void deleteMail(MAIL_DATA *mail) {

if(mail->sender) free(mail->sender);

if(mail->time) free(mail->time);

if(mail->mssg) deleteBuffer(mail->mssg);

free(mail);

}

// parse a piece of mail from a storage set

MAIL_DATA *mailRead(STORAGE_SET *set) {

33

// allocate some memory for the mail

MAIL_DATA *mail = malloc(sizeof(MAIL_DATA));

mail->mssg = newBuffer(1);

// read in all of our values

mail->sender = strdup(read_string(set, "sender"));

mail->time = strdup(read_string(set, "time"));

bufferCat(mail->mssg, read_string(set, "mssg"));

return mail;

}

// represent a piece of mail as a storage set

STORAGE_SET *mailStore(MAIL_DATA *mail) {

// create a new storage set

STORAGE_SET *set = new_storage_set();

store_string(set, "sender", mail->sender);

store_string(set, "time", mail->time);

store_string(set, "mssg", bufferString(mail->mssg));

return set;

}

// saves all of our unreceived mail to disk

void save_mail(void) {

// make a storage set to hold all our mail

STORAGE_SET *set = new_storage_set();

// make a list of name:mail pairs, and store it in the set

STORAGE_SET_LIST *list = new_storage_list();

// iterate across all of the people who have not received mail, and

// store their names in the storage list, along with their mail

HASH_ITERATOR *mail_i = newHashIterator(mail_table);

const char *name = NULL;

LIST *mail = NULL;

ITERATE_HASH(name, mail, mail_i) {

// create a new storage set that holds each name:mail pair,

// and add it to our list of all name:mail pairs

STORAGE_SET *one_pair = new_storage_set();

34

store_string (one_pair, "name", name);

store_list (one_pair, "mail", gen_store_list(mail, mailStore));

storage_list_put(list, one_pair);

} deleteHashIterator(mail_i);

// make sure we add the list of name:mail pairs we want to save

store_list(set, "list", list);

// now, store our set in the mail file, and clean up our mess

storage_write(set, MAIL_FILE);

storage_close(set);

}

// loads all of our unreceived mail from disk

void load_mail(void) {

// parse our storage set

STORAGE_SET *set = storage_read(MAIL_FILE);

// make sure the file existed and wasn’t empty

if(set == NULL) return;

// get the list of all name:mail pairs, and parse each one

STORAGE_SET_LIST *list = read_list(set, "list");

STORAGE_SET *one_pair = NULL;

while((one_pair = storage_list_next(list)) != NULL) {

const char *name = read_string(one_pair, "name");

LIST *mail = gen_read_list(read_list(one_pair, "mail"), mailRead);

hashPut(mail_table, name, mail);

}

// Everything is parsed! Now it’s time to clean up our mess

storage_close(set);

}

// mails a message to the specified person. This command must take the

// following form:

// mail <person>

35

//

// The contents of the character’s notepad will be used as the body of the

// message. The character’s notepad must not be empty.

COMMAND(cmd_mail) {

// make sure the character exists

if(!char_exists(arg))

send_to_char(ch, "Noone named %s is registered on %s.\r\n",

arg, "<insert mud name here>");

// make sure we have a socket - we’ll need access to its notepad

else if(!charGetSocket(ch))

send_to_char(ch, "Only characters with sockets can send mail!\r\n");

// make sure our notepad is not empty

else if(!*bufferString(socketGetNotepad(charGetSocket(ch))))

send_to_char(ch, "Your notepad is empty. "

"First, try writing something with {cwrite{n.\r\n");

// the character exists. Let’s parse the items and send the mail

else {

MAIL_DATA *mail = newMail(ch, bufferString(socketGetNotepad(charGetSocket(ch))));

// see if the receiver already has a mail list

LIST *mssgs = hashGet(mail_table, arg);

// if he doesn’t, create one and add it to the hashtable

if(mssgs == NULL) {

mssgs = newList();

hashPut(mail_table, arg, mssgs);

}

// add the new mail to our mail list

listPut(mssgs, mail);

// let the character know we’ve sent the mail

send_to_char(ch, "You send a message to %s.\r\n", arg);

// save all unread mail

save_mail();

}

}

36

// checks to see if the character has any mail. If he does, convert each piece

// of mail into an object, and transfer them all into the character’s inventory.

COMMAND(cmd_receive) {

// Remove the character’s mail list from our mail table

LIST *mail_list = hashRemove(mail_table, charGetName(ch));

// make sure the list exists

if(mail_list == NULL || listSize(mail_list) == 0)

send_to_char(ch, "You have no new mail.\r\n");

// hand over all of the mail

else {

// go through each piece of mail, make an object for it,

// and transfer the new object to us

LIST_ITERATOR *mail_i = newListIterator(mail_list);

MAIL_DATA *mail = NULL;

ITERATE_LIST(mail, mail_i) {

OBJ_DATA *obj = newObj();

objSetName (obj, "a letter");

objSetKeywords (obj, "letter, mail");

objSetRdesc (obj, "A letter is here.");

objSetMultiName (obj, "A stack of %d letters");

objSetMultiRdesc(obj, "A stack of %d letters are here.");

bprintf(objGetDescBuffer(obj),

"Sender : %s\r\n"

"Date sent: %s\r\n"

"%s", mail->sender, mail->time, bufferString(mail->mssg));

// give the object to the character

obj_to_game(obj);

obj_to_char(obj, ch);

} deleteListIterator(mail_i);

// let the character know how much mail he received

send_to_char(ch, "You receive %d letter%s.\r\n",

listSize(mail_list), (listSize(mail_list) == 1 ? "" : "s"));

37

// update the unread mail in our mail file

save_mail();

}

// delete the mail list, and all of its contents

if(mail_list != NULL) deleteListWith(mail_list, deleteMail);

}

// boot up the mail module

void init_mail(void) {

// initialize our mail table

mail_table = newHashtable();

// parse any unread mail

load_mail();

// add all of the commands that come with this module

add_cmd("mail", NULL, cmd_mail, POS_STANDING, POS_FLYING,

"player", FALSE, TRUE);

add_cmd("receive", NULL, cmd_receive, POS_STANDING, POS_FLYING,

"player", FALSE, TRUE);

}

38

C Mail Module Code, Third Draft

##

module.mk

##

include all of the source files contained in this module

SRC += mail/mail.c

//***

// mail.h

//***

#ifndef MAIL_H

#define MAIL_H

// this function should be called when the MUD first boots up.

// calling it will initialize the mail module for use.

void init_mail(void);

#endif // MAIL_H

//***

// mail.c

//***

// include all the header files we will need from the MUD core

#include "../mud.h"

#include "../utils.h" // for get_time()

#include "../character.h" // for handling characters sending mail

#include "../save.h" // for char_exists()

#include "../object.h" // for creating mail objects

#include "../handler.h" // for giving mail to characters

#include "../storage.h" // for saving/loading auxiliary data

#include "../auxiliary.h" // for creating new auxiliary data

#include "../world.h" // for loading offline chars receiving mail

39

// include headers from other modules that we require

#include "../editor/editor.h" // for access to sockets’ notepads

// include the headers for this module

#include "mail.h"

// maps charName to a list of mail they have received

HASHTABLE *mail_table = NULL;

typedef struct {

char *sender; // name of the char who sent this mail

char *time; // the time it was sent at

BUFFER *mssg; // the accompanying message

} MAIL_DATA;

// create a new piece of mail.

MAIL_DATA *newMail(CHAR_DATA *sender, const char *mssg) {

MAIL_DATA *mail = malloc(sizeof(MAIL_DATA));

mail->sender = strdup(charGetName(sender));

mail->time = strdup(get_time());

mail->mssg = newBuffer(strlen(mssg));

bufferCat(mail->mssg, mssg);

return mail;

}

// free all of the memory that was allocated to make this piece of mail

void deleteMail(MAIL_DATA *mail) {

if(mail->sender) free(mail->sender);

if(mail->time) free(mail->time);

if(mail->mssg) deleteBuffer(mail->mssg);

free(mail);

}

// parse a piece of mail from a storage set

MAIL_DATA *mailRead(STORAGE_SET *set) {

// allocate some memory for the mail

MAIL_DATA *mail = malloc(sizeof(MAIL_DATA));

mail->mssg = newBuffer(1);

40

// read in all of our values

mail->sender = strdup(read_string(set, "sender"));

mail->time = strdup(read_string(set, "time"));

bufferCat(mail->mssg, read_string(set, "mssg"));

return mail;

}

// represent a piece of mail as a storage set

STORAGE_SET *mailStore(MAIL_DATA *mail) {

// create a new storage set

STORAGE_SET *set = new_storage_set();

store_string(set, "sender", mail->sender);

store_string(set, "time", mail->time);

store_string(set, "mssg", bufferString(mail->mssg));

return set;

}

// copy a piece of mail. This will be needed by our auxiliary

// data copy functions

MAIL_DATA *mailCopy(MAIL_DATA *mail) {

MAIL_DATA *newmail = malloc(sizeof(MAIL_DATA));

newmail->sender = strdup(mail->sender);

newmail->time = strdup(mail->time);

newmail->mssg = bufferCopy(mail->mssg);

return newmail;

}

// our mail auxiliary data.

// Holds a list of all the unreceived mail a person has

typedef struct {

LIST *mail; // our list of unread mail

} MAIL_AUX_DATA;

// create a new instance of mail aux data, for us to put onto a character

MAIL_AUX_DATA *newMailAuxData(void) {

MAIL_AUX_DATA *data = malloc(sizeof(MAIL_AUX_DATA));

41

data->mail = newList();

return data;

}

// delete a character’s mail aux data

void deleteMailAuxData(MAIL_AUX_DATA *data) {

if(data->mail) deleteListWith(data->mail, deleteMail);

free(data);

}

// copy one mail aux data to another

void mailAuxDataCopyTo(MAIL_AUX_DATA *from, MAIL_AUX_DATA *to) {

if(to->mail) deleteListWith(to->mail, deleteMail);

if(from->mail) to->mail = listCopyWith(from->mail, mailCopy);

else to->mail = newList();

}

// return a copy of a mail aux data

MAIL_AUX_DATA *mailAuxDataCopy(MAIL_AUX_DATA *data) {

MAIL_AUX_DATA *newdata = newMailAuxData();

mailAuxDataCopyTo(data, newdata);

return newdata;

}

// parse a mail aux data from a storage set

MAIL_AUX_DATA *mailAuxDataRead(STORAGE_SET *set) {

MAIL_AUX_DATA *data = malloc(sizeof(MAIL_AUX_DATA));

data->mail = gen_read_list(read_list(set, "mail"), mailRead);

return data;

}

// represent a mail aux data as a storage set

STORAGE_SET *mailAuxDataStore(MAIL_AUX_DATA *data) {

STORAGE_SET *set = new_storage_set();

store_list(set, "mail", gen_store_list(data->mail, mailStore));

return set;

}

42

// mails a message to the specified person. This command must take the

// following form:

// mail <person>

//

// The contents of the character’s notepad will be used as the body of the

// message. The character’s notepad must not be empty.

COMMAND(cmd_mail) {

// make sure the character exists

if(!char_exists(arg))

send_to_char(ch, "Noone named %s is registered on %s.\r\n",

arg, "<insert mud name here>");

// make sure we have a socket - we’ll need access to its notepad

else if(!charGetSocket(ch))

send_to_char(ch, "Only characters with sockets can send mail!\r\n");

// make sure our notepad is not empty

else if(!*bufferString(socketGetNotepad(charGetSocket(ch))))

send_to_char(ch, "Your notepad is empty. "

"First, try writing something with {cwrite{n.\r\n");

// the character exists. Let’s parse the items and send the mail

else {

// create the new piece of mail

MAIL_DATA *mail = newMail(ch, bufferString(socketGetNotepad(charGetSocket(ch))));

// get a copy of the player, send mail, and save

CHAR_DATA *recv = get_player(arg);

send_to_char(recv, "You have new mail.\r\n");

// let’s pull out the character’s mail aux data, and add the new piece

MAIL_AUX_DATA *maux = charGetAuxiliaryData(recv, "mail_aux_data");

listPut(maux->mail, mail);

save_player(recv);

// get rid of our reference, and extract from game if need be

unreference_player(recv);

// let the character know we’ve sent the mail

43

send_to_char(ch, "You send a message to %s.\r\n", arg);

}

}

// checks to see if the character has any mail. If he does, convert each piece

// of mail into an object, and transfer them all into the character’s inventory.

COMMAND(cmd_receive) {

// Remove the character’s mail list from our mail table

MAIL_AUX_DATA *maux = charGetAuxiliaryData(ch, "mail_aux_data");

LIST *mail_list = maux->mail;

// replace our old list with a new one. Our old one will be deleted soon

maux->mail = newList();

// make sure the list exists

if(mail_list == NULL || listSize(mail_list) == 0)

send_to_char(ch, "You have no new mail.\r\n");

// hand over all of the mail

else {

// go through each piece of mail, make an object for it,

// and transfer the new object to us

LIST_ITERATOR *mail_i = newListIterator(mail_list);

MAIL_DATA *mail = NULL;

ITERATE_LIST(mail, mail_i) {

OBJ_DATA *obj = newObj();

BUFFER *desc = newBuffer(1);

objSetName (obj, "a letter");

objSetKeywords (obj, "letter, mail");

objSetRdesc (obj, "A letter is here.");

objSetMultiName (obj, "A stack of %d letters");

objSetMultiRdesc(obj, "A stack of %d letters are here.");

// make our description

bprintf(desc,

"Sender : %s\r\n"

"Date sent: %s\r\n"

"%s", mail->sender, mail->time, bufferString(mail->mssg));

objSetDesc(obj, bufferString(desc));

44

// clean up our mess and give the object to the character

deleteBuffer(desc);

obj_to_game(obj);

obj_to_char(obj, ch);

} deleteListIterator(mail_i);

// let the character know how much mail he received

send_to_char(ch, "You receive %d letter%s.\r\n",

listSize(mail_list), (listSize(mail_list) == 1 ? "" : "s"));

}

// delete the mail list, and all of its contents

if(mail_list != NULL) deleteListWith(mail_list, deleteMail);

}

// boot up the mail module

void init_mail(void) {

// install our auxiliary data

auxiliariesInstall("mail_aux_data",

newAuxiliaryFuncs(AUXILIARY_TYPE_CHAR,

newMailAuxData, deleteMailAuxData,

mailAuxDataCopyTo, mailAuxDataCopy,

mailAuxDataStore, mailAuxDataRead));

// add all of the commands that come with this module

add_cmd("mail", NULL, cmd_mail, POS_STANDING, POS_FLYING,

"player", FALSE, TRUE);

add_cmd("receive", NULL, cmd_receive, POS_STANDING, POS_FLYING,

"player", FALSE, TRUE);

}

45

