
TinyMUD 2.4 Reference Manual

(preliminary version)

James Aspnes
School of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

August 12, 2005

1 Introduction

TinyMUD 2 was written as a successor to the original TinyMUD and its
many descendants. Its principal features include a specialized programming
language designed to grant enough power to produce interesting effects with-
out granting so much power that a programmer can easily damage or shut
down the TinyMUD server, an inheritance hierarchy that allows the easy
construction of classes of objects which can be used by non-programmers,
and an efficient parser that supports (relatively) complex inputs allowing
a command to take multiple objects. One of the main goals of TinyMUD
2 has been to eliminate nearly all game-specific code from the server im-
plementation, and move it instead into the database, coded in the built-in
programming language.

This document describe the built-in programming language and the be-
havior of the TinyMUD 2 parser.

2 Language

This section describes the features of the programming language available
in TinyMUD 2.4.

1

2.1 Types

The data types supported by the language are: objects, booleans, strings,
numbers, actions, sets, and times. All variables except those referring to
objects are prefixed with a single-character type specifier, as follows:

x object
?x boolean
$x string
%x number (integer)
&x action
@x set; an unordered collection of objects
~x time

Values of type string and type action can be used interchangeably. Values
of all types may be used as booleans; they take on the value ?false if they
are null and ?true otherwise. This feature is primarily useful for detecting
“empty” variables. Values of type number are automatically coerced to their
decimal expansion when used as a string.

Most language primitives restrict the types of their arguments; these
restrictions will be described with each primitive.

2.2 Constants

All constants of type number consist of a contiguous sequence of decimal
digits, e.g. 1, 5567, etc. There are only two boolean values, represented by
the constants ?true and ?false.

String constants have a rather complicated syntax. In their simplest
form, string constants look much like string constants in many other lan-
guages: a sequence of characters delimited by double-quotes, as in
"Every good boy deserves favor.". The set of characters that may ap-
pear in side a string constant is severely restricted— only printing ASCII
characters (including space) and the tab character are allowed. By conven-
tion the tab character is used to represent newlines within a “multi-line”
string, as the newline character is reserved for separating inputs to and
outputs from the server process.

String constants may also appear in the form of “giant” strings. These
are delimited by matching pairs of square brackets. Other string constants
may be nested within a giant string constant. Some examples of giant string
constants:

[Every good boy deserves favor.]

2

[The sign says "ELVIS NEEDS BOATS"]
[set thing.&code to [tell "You lose!" to you]]

Double-quotes appearing within a simple string constant may be es-
caped using a backslash, as in "The sign says \"ELVIS NEEDS BOATS\"",
which will print as The sign says "ELVIS NEEDS BOATS". Backslashes
and square brackets (in giant strings) may also be escaped using backslashes.
The effect of putting a backslash before other characters is unpredictable.

2.2.1 Null constants

Two special constants exist for referring to “null” values, which are the
default values held by variables of type object, string, or action. These are
nothing (for objects) and $null (for strings and actions.) Null values are
used primarily for shadowing inherited variable bindings. The null values of
type number and boolean are 0 and ?false, respectively. It is dangerous to
depend on the existence of null values for types time and set.

2.3 Variables

Every object can possess variables of any of the seven types. A variable
name by itself refers to a component of me. It is possible to refer to vari-
ables on other objects using the dot operator,
e.g. location.owner.pet_dog.%number_of_fleas. Most variable names
may contain only letters, digits, and the underscore character; action names
may also contain a single occurence of one of the characters < or >. Object
variables may not start with a digit to prevent confusion with numeric con-
stants. It is recommended that non-action variable names beginning with
an underscore be avoided except for “temporary” variables that are only
used within a single action invocation.

Variables occuring in a statement return their value. It is possible to set
the value of most variables using the set statement, e.g.:

set dog.%fleas to 5
set location.$description to "Foo"
set ?happy to ?true
set broken_container.&take>from to [tell "You lose!" to you]

Variables of type set cannot appear in a set statement (other mechanisms
exists for modifying such variables, as described below.) An object can only

3

set variables on objects it controls. Any object may read any variable on
any other object.

Variables may also be cleared using the clear statement, e.g.:

clear dog.%fleas
clear location.$description
clear ?happy
clear broken_container.&take>from
clear @tools

Clearing a variable has the affect of removing it completely from an
object, allowing a default value to be inherited from its ancestors. Variables
of any type may be cleared.

It is necessary to have control of an object to modify any of its variables.
However, any object can read any variable.

Certain variables have special meaning to the system and thus have
additional restrictions on their use:

me Holds the object processing an action. May not be set.

you Holds the object which initiated an action, i.e. the object correspond-
ing to the user which typed the currently-executing command. May
not be set.

next Iteration variable inside loops; holds the current object in the set or
contents list being iterated over. May not be set, and has no meaning
outside of a loop.

$text Any unparsed text from the command line. May not be set.

~time The current time.

%id The unique ID number of an object. ID numbers also exist for strings
(e.g. $name.%id) and other types. Use of ID numbers is discouraged.

%count The number of objects contained in an object’s contents set. %count
may also be used on set variables to count their contents,
e.g. TOP.@connected_players.%count.

%random Returns a different non-negative random number every time it is
used.

4

location The location of an object. This may not be set directly, although
it is affected by the move statement.

owner The owner of an object. May only be set by wizard objects.

parent The parent of an object, used to control inheritance. It is not
permitted to set the parent of an object to one of its descendants.

$aliases A string listing the names with which an object may be named
on the command line. The aliases are separated by the pipe character,
as in "George | george | G". Case is significant.

create Returns a new object every time it is used. May only be used by
wizard objects and may not be set.

There are also several boolean variables with special meaning to the
system:

?player This object is a player. May only be set by wizard objects.

?builder Reserved for future expansion. May only be set by wizard ob-
jects.

?programmer Allows use of syntax from the command line. May only be
set by wizard objects.

?wizard Objects with the ?wizard bit set have special privileges, including
implicit control over all other objects that do not have their ?admin
bit set. The ?wizard bit may only be set by objects possessing the
?admin bit.

?admin Gives the object the ability to set ?wizard bits and execute certain
system commands. Cannot be set or reset; under normal conditions,
only the TOP object will have this bit set on it.

?connected Tells whether a player is connected or not. Automatically
maintained by the system; can also be set by admin objects.

?paranoid If true, any tell sent to this player will be annotated with the
id of its source.

?open If true, relaxes some of the restrictions on movement. Can be set by
any controlling object.

5

There are also a large number of action names that have special meaning
to the system. As these action names begin with underscores, they cannot
be parsed from the command line:

&_default Called on the location of the current player if it is impossible
to parse the command line; $text is set to the entire input.

&_before Called on both the location of the current player and on the
current player before an action is handled.

&_after Called on both the location of the current player and on the
current player after an action is handled. If the player moves during the
action, it is still the original location which gets the &_after action.

&_invoke Called on an object if the command line matches one of its
aliases.

&_startup Called exactly once on every object when the system is started.

&_connect Called on a player when the player connects.

&_disconnect Called on a player when the player disconnects.

&_tick Called when a delay expires.

2.3.1 Inheritance

Variables of all types except set are inherited. If the system cannot find a
value for a particular variable on an object, it will try instead to use the
value of that variable on the object’s parent, and will similarly continue
to ascend the chain of ancestors until either a value is found or no more
ancestors exist. In the latter case, a null value is returned whose meaning
depends on the type of the variable.

The semantics of inheritance create a distinction between the absence of
a variable on an object (which allows ancestors’ values to be inherited) and
the presence of a variable whose value is null. The clear statement always
results in the former state; if the latter state is preferred it is necessary to
explicitly set the variable to the appropriate null constant.

6

2.3.2 Set variables

Variables of type set are unusual. Unlike variables of other types, they are
not inherited. They also may not be set; instead, two additional state-
ments are provided for manipulating set variables. The add/to statement
adds an object to a set, as in add dog to kennel.@inmates. Similarly, the
take/from statement removes an object from a set, as in
take dog from kennel.@inmates. The same restrictions are placed on
changing a set variable as are placed on changing a variable of any of the
other types; the object requesting the change must have control over the
object of which the set variable is a component.

2.4 Expressions

The usual simple arithmetic operations on numbers, +, -, *, / are sup-
ported, with the normal precedence, as is unary minus and the remainder
operator mod (e.g. %random mod 3.) Times may be subtracted to yield a
number which counts the seconds between them; a number may also be
added to or subtracted from a time to yield a new time, and a time may
be taken mod a number to yield a number. This last facility allows times
to be displayed in ways other than the default. For example, a clock might
contain the following code as part of its look handler:

tell (~time mod 43200) / 3600 ":" ~time mod 60 to you

This will print out the current hour and minute separated by a colon.
A full set of comparison operators is available: < > <= >= = !=. Fol-

lowing C conventions != means “not equals.” Values of any type except set
may be tested for equality or non-equality; other comparison operators may
only be used on numbers or times.

Supported logical operators are ! (not), and, and or. The and and or
operators are guaranteed to evaluate their left argument first and to evaluate
their right argument only if necessary. Thus, for example, in the statement:

move me to you.location and move you to me

the second move statement is executed only if the first returns ?true,
i.e. if it succeeds.

7

2.4.1 Predicates

There are two built-in predicates. $x matches y returns ?true when $x
is a valid alias for y. @x contains y returns ?true when y is an element
of @x. As elsewhere, an object may be substituted for the set, and is then
interpreted to mean the object’s contents.

2.5 Statements

All statements may also be used in expressions for their boolean value, which
indicates whether the statement succeeded or not.

In addition to the set, clear, add/from, and take/to statements already
described, the following classes of statements are supported:

tell string-list to object Used to send a message to a player. string-list
may contain any number of expressions of type string, action, time, or
number, which are formatted according to their type and concatenated
to form the resulting method. No special privileges are required to do
a tell.

move object to destination Moves an object to a destination (also an object.)
Move statements are tightly restricted: the object being moved must
be controlled by me, in a location controlled by me, or be equal to you;
the destination must be controlled by me, have its ?open bit set, or be
equal to you. If these conditions are not met the move does not take
place and the statement returns ?false.

delay time or delay number Adds an entry to the system delay queue.
This has the effect of causing the system to deliver a _tick method to
me when either the time has been reached (first form) or the specified
number of seconds have elapsed (second form.) An object may have
any number of pending delays, but only wizard objects may execute a
delay statement inside a _tick handler. The delay queue is not saved
in checkpoint files and is not preserved across system reboots.

destroy object Destroys an object, clearing all of its variables (including
system variables) and removing it from its location. References to
destroyed objects are not removed; however, once an object has been
destroyed it can not be modified or moved.

8

2.6 Control structures

The language supports two main control structures, if/then statements and
bounded loops over the contents of a set. The if/then statment has the
following general form:

if expr then statements [elseif expr then statements]∗ [else
statements] endif

where the asterisk indicates that any number of elseif clauses may appear,
the else clause is optional, and each block of statements can contain any
number of individual statements. Here’s an example of an if/then statement
that one might actually find in a program:

if ?locked then
tell "The door appears to be locked." to you
elseif move you to other_side then
tell "You go through the door." to you
else
tell "The door is stuck." to you
endif

Note that the endif is not optional!
The other control structure is the loop, which is written as follows:

in set [matching string] do statements end

Without the optional matching clause, executes the statements once
for each object in the set with next set to the current object. With the
matching clause, executes the statements only for objects matching the
specified string. While this second form is equivalent to a loop surrounding
an if/then statement, it is likely to be much more efficient in practice.

Loops may not be nested. The break statement, consisting only of that
keyword, may be used to exit a loop immediately.

2.7 Exit Statement

The statement exit immediately terminates the execution of an action.

9

2.8 Security

The security system is centered around the notion of control. Under most
circumstances, one object controls another if both are owned by the same
player. However, certain objects have special permissions which affect con-
trol as follows:

1. An object with its ?wizard bit set to ?true controls any non-admin
object.

2. No non-wizard object may control a wizard object, even if they have
the same owner.

3. No other object ever controls an admin object.

Control is necessary to modify an object’s variables, and is used to de-
termine when a move expression may be successfully carried out. Control is
not necessary to read an object’s variables. In all cases control is tested for
the object me, which provides the currently-executing code.

3 Command Parsing

Actions come in several varieties. Single-word actions like &get or &look
take at most one object and are handled by either that object, the player, or
the surrounding room. Two-word actions like &get>from or &describe<as
require two objects; the object “pointed to” by the < or > handles the action
and the other is passed through unparsed in the variable $text. There are
also two special actions used by the parser, _invoke and _default.

When presented with a line of input the command parser considers many
possible ways of interpreting it as an action, taking the first successful parse
in the following list:

code If the line begins with an at-sign, the remainder of the line is treated
as code in the programming language, compiled, and run with me set
to the current player. The player must have the ?programmer bit set
to use this feature.

verb If verb is a single-word action on the room (first choice) or the current
player, invoke it with $text set to the null string. Example: look.

10

object If the entire command line matches an alias for an object in the cur-
rent room or the player’s inventory, and that object has an &_invoke
method, call that method with $text set to null. Example: north.

verb object If object matches an object in the current room or the player’s
inventory, and &verb is an action on that object, invoke it with $text
set to null. Example: get book.

verb1 object1 verb2 object2 If &verb1<verb2 is an action on some ob-
ject matching object1, invoke it with $text set to object2 as an un-
parsed string (the action may, of course, choose to do its own match
on object2.) Similarly, if &verb1>verb2 is an action on some object
matching object2, invoke that action with $text set to object1. Ex-
amples: whisper Hi there to fred could invoke a &whisper>to action on
fred if it has one, and open door with key could invoke an &open<with
action on some object matching “door”.

verb text Call &verb on room or player with all other words passed through
unparsed in $text.
Example: say Good Morning!

text Call &_default on room or player if possible. This behavior is a
last resort for the parser, and is used primarily to implement error
messages.

If none of the above parses are possible, the system will print an unin-
formative message and wait for another line of input.

During the execution of an action the variable me is set to the object
which “receives” it, i.e. the object on which the action is found. you is
always the current player, and $text is set as described above.

One must be careful when writing an action handler to consider all cir-
cumstances under which it might be invoked. For example, suppose that
an object A (with an alias named “A”) has a handler for &look. Then it is
possible that this handler might be called in any of the following situations:

• If some player contained in A types “look”.

• If A is a player who types “look.”

• If some player who either holds A or is in the same location as A types
“look A”.

11

• If some player contained in A types “look B” and B does not match
anything in A or in the player.

• If A is a player who types “look B” and B doesn’t match anything.

In most cases where the differences between these cases are critical (as
in the last two cases above) it is possible to distinguish them by examining
$text and the relative positions of me and you.

12

