6D/
6D/area/
6D/boards/
6D/city/
6D/color/
6D/corpses/
6D/councils/
6D/htowns/
6D/news/
6D/specials/
6D/src/specials/
6D/src/trades/
/*-
 * Copyright 2005 Colin Percival
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <stdio.h>
#include <string.h>
#include <sys/cdefs.h>
#include <sys/param.h>
#include <endian.h>
#include "h/sha256.h"

#if __FreeBSD_version < 500111

static __inline int be32dec(const void *pp)
{
  unsigned char const    *p = (unsigned char const *)pp;

  return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
}

static __inline void be32enc(void *pp, int u)
{
  unsigned char          *p = (unsigned char *)pp;

  p[0] = (u >> 24) & 0xff;
  p[1] = (u >> 16) & 0xff;
  p[2] = (u >> 8) & 0xff;
  p[3] = u & 0xff;
}

#endif

#if BYTE_ORDER == BIG_ENDIAN

/* Copy a vector of big-endian int into a vector of bytes */
#define be32enc_vect(dst, src, len)	\
	memcpy((void *)dst, (const void *)src, (size_t)len)

/* Copy a vector of bytes into a vector of big-endian int */
#define be32dec_vect(dst, src, len)	\
	memcpy((void *)dst, (const void *)src, (size_t)len)

#else /* BYTE_ORDER != BIG_ENDIAN */

/*
 * Encode a length len/4 vector of (int) into a length len vector of
 * (unsigned char) in big-endian form.  Assumes len is a multiple of 4.
 */
static void be32enc_vect(unsigned char *dst, const int *src, size_t len)
{
  size_t                  i;

  for(i = 0; i < len / 4; i++)
    be32enc(dst + i * 4, src[i]);
}

/*
 * Decode a big-endian length len vector of (unsigned char) into a length
 * len/4 vector of (int).  Assumes len is a multiple of 4.
 */
static void be32dec_vect(int *dst, const unsigned char *src, size_t len)
{
  size_t                  i;

  for(i = 0; i < len / 4; i++)
    dst[i] = be32dec(src + i * 4);
}

#endif /* BYTE_ORDER != BIG_ENDIAN */

/* Elementary functions used by SHA256 */
#define Ch(x, y, z)	((x & (y ^ z)) ^ z)
#define Maj(x, y, z)	((x & (y | z)) | (y & z))
#define SHR(x, n)	(x >> n)
#define ROTR(x, n)	((x >> n) | (x << (32 - n)))
#define S0(x)		(ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x)		(ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x)		(ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x)		(ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))

/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k)			\
	t0 = h + S1(e) + Ch(e, f, g) + k;		\
	t1 = S0(a) + Maj(a, b, c);			\
	d += t0;					\
	h  = t0 + t1;

/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k)			\
	RND(S[(64 - i) % 8], S[(65 - i) % 8],	\
	    S[(66 - i) % 8], S[(67 - i) % 8],	\
	    S[(68 - i) % 8], S[(69 - i) % 8],	\
	    S[(70 - i) % 8], S[(71 - i) % 8],	\
	    W[i] + k)

/*
 * SHA256 block compression function.  The 256-bit state is transformed via
 * the 512-bit input block to produce a new state.
 */
static void SHA256_Transform(int *state, const unsigned char block[64])
{
  int                     W[64];
  int                     S[8];
  int                     t0, t1;
  int                     i;

  /*
   * 1. Prepare message schedule W. 
   */
  be32dec_vect(W, block, 64);
  for(i = 16; i < 64; i++)
    W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];

  /*
   * 2. Initialize working variables. 
   */
  memcpy(S, state, 32);

  /*
   * 3. Mix. 
   */
  RNDr(S, W, 0, 0x428a2f98);
  RNDr(S, W, 1, 0x71374491);
  RNDr(S, W, 2, 0xb5c0fbcf);
  RNDr(S, W, 3, 0xe9b5dba5);
  RNDr(S, W, 4, 0x3956c25b);
  RNDr(S, W, 5, 0x59f111f1);
  RNDr(S, W, 6, 0x923f82a4);
  RNDr(S, W, 7, 0xab1c5ed5);
  RNDr(S, W, 8, 0xd807aa98);
  RNDr(S, W, 9, 0x12835b01);
  RNDr(S, W, 10, 0x243185be);
  RNDr(S, W, 11, 0x550c7dc3);
  RNDr(S, W, 12, 0x72be5d74);
  RNDr(S, W, 13, 0x80deb1fe);
  RNDr(S, W, 14, 0x9bdc06a7);
  RNDr(S, W, 15, 0xc19bf174);
  RNDr(S, W, 16, 0xe49b69c1);
  RNDr(S, W, 17, 0xefbe4786);
  RNDr(S, W, 18, 0x0fc19dc6);
  RNDr(S, W, 19, 0x240ca1cc);
  RNDr(S, W, 20, 0x2de92c6f);
  RNDr(S, W, 21, 0x4a7484aa);
  RNDr(S, W, 22, 0x5cb0a9dc);
  RNDr(S, W, 23, 0x76f988da);
  RNDr(S, W, 24, 0x983e5152);
  RNDr(S, W, 25, 0xa831c66d);
  RNDr(S, W, 26, 0xb00327c8);
  RNDr(S, W, 27, 0xbf597fc7);
  RNDr(S, W, 28, 0xc6e00bf3);
  RNDr(S, W, 29, 0xd5a79147);
  RNDr(S, W, 30, 0x06ca6351);
  RNDr(S, W, 31, 0x14292967);
  RNDr(S, W, 32, 0x27b70a85);
  RNDr(S, W, 33, 0x2e1b2138);
  RNDr(S, W, 34, 0x4d2c6dfc);
  RNDr(S, W, 35, 0x53380d13);
  RNDr(S, W, 36, 0x650a7354);
  RNDr(S, W, 37, 0x766a0abb);
  RNDr(S, W, 38, 0x81c2c92e);
  RNDr(S, W, 39, 0x92722c85);
  RNDr(S, W, 40, 0xa2bfe8a1);
  RNDr(S, W, 41, 0xa81a664b);
  RNDr(S, W, 42, 0xc24b8b70);
  RNDr(S, W, 43, 0xc76c51a3);
  RNDr(S, W, 44, 0xd192e819);
  RNDr(S, W, 45, 0xd6990624);
  RNDr(S, W, 46, 0xf40e3585);
  RNDr(S, W, 47, 0x106aa070);
  RNDr(S, W, 48, 0x19a4c116);
  RNDr(S, W, 49, 0x1e376c08);
  RNDr(S, W, 50, 0x2748774c);
  RNDr(S, W, 51, 0x34b0bcb5);
  RNDr(S, W, 52, 0x391c0cb3);
  RNDr(S, W, 53, 0x4ed8aa4a);
  RNDr(S, W, 54, 0x5b9cca4f);
  RNDr(S, W, 55, 0x682e6ff3);
  RNDr(S, W, 56, 0x748f82ee);
  RNDr(S, W, 57, 0x78a5636f);
  RNDr(S, W, 58, 0x84c87814);
  RNDr(S, W, 59, 0x8cc70208);
  RNDr(S, W, 60, 0x90befffa);
  RNDr(S, W, 61, 0xa4506ceb);
  RNDr(S, W, 62, 0xbef9a3f7);
  RNDr(S, W, 63, 0xc67178f2);

  /*
   * 4. Mix local working variables into global state 
   */
  for(i = 0; i < 8; i++)
    state[i] += S[i];
}

static unsigned char    PAD[64] = {
  0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

/* Add padding and terminating bit-count. */
static void SHA256_Pad(SHA256_CTX *ctx)
{
  unsigned char           len[8];
  int                     r, plen;

  /*
   * Convert length to a vector of bytes -- we do this now rather
   * than later because the length will change after we pad.
   */
  be32enc_vect(len, ctx->count, 8);

  /*
   * Add 1--64 bytes so that the resulting length is 56 mod 64 
   */
  r = (ctx->count[1] >> 3) & 0x3f;
  plen = (r < 56) ? (56 - r) : (120 - r);
  SHA256_Update(ctx, PAD, (size_t) plen);

  /*
   * Add the terminating bit-count 
   */
  SHA256_Update(ctx, len, 8);
}

/* SHA-256 initialization.  Begins a SHA-256 operation. */
void SHA256_Init(SHA256_CTX *ctx)
{
  /*
   * Zero bits processed so far 
   */
  ctx->count[0] = ctx->count[1] = 0;

  /*
   * Magic initialization constants 
   */
  ctx->state[0] = 0x6A09E667;
  ctx->state[1] = 0xBB67AE85;
  ctx->state[2] = 0x3C6EF372;
  ctx->state[3] = 0xA54FF53A;
  ctx->state[4] = 0x510E527F;
  ctx->state[5] = 0x9B05688C;
  ctx->state[6] = 0x1F83D9AB;
  ctx->state[7] = 0x5BE0CD19;
}

/* Add bytes into the hash */
void SHA256_Update(SHA256_CTX *ctx, const unsigned char *src, size_t len)
{
  int                     bitlen[2];
  size_t                  r;

  /*
   * Number of bytes left in the buffer from previous updates 
   */
  r = (ctx->count[1] >> 3) & 0x3f;

  /*
   * Convert the length into a number of bits 
   */
  bitlen[1] = ((int)len) << 3;
  bitlen[0] = (int)(len >> 29);

  /*
   * Update number of bits 
   */
  if((ctx->count[1] += bitlen[1]) < bitlen[1])
    ctx->count[0]++;
  ctx->count[0] += bitlen[0];

  /*
   * Handle the case where we don't need to perform any transforms 
   */
  if(len < 64 - r)
  {
    memcpy(&ctx->buf[r], src, len);
    return;
  }

  /*
   * Finish the current block 
   */
  memcpy(&ctx->buf[r], src, 64 - r);
  SHA256_Transform(ctx->state, ctx->buf);
  src += 64 - r;
  len -= 64 - r;

  /*
   * Perform complete blocks 
   */
  while(len >= 64)
  {
    SHA256_Transform(ctx->state, src);
    src += 64;
    len -= 64;
  }

  /*
   * Copy left over data into buffer 
   */
  memcpy(ctx->buf, src, len);
}

/*
 * SHA-256 finalization.  Pads the input data, exports the hash value,
 * and clears the context state.
 */
void SHA256_Final(unsigned char digest[32], SHA256_CTX *ctx)
{
  /*
   * Add padding 
   */
  SHA256_Pad(ctx);

  /*
   * Write the hash 
   */
  be32enc_vect(digest, ctx->state, 32);

  /*
   * Clear the context state 
   */
  memset((void *)ctx, 0, sizeof(*ctx));
}

char                   *sha256_crypt(const char *pwd)
{
  SHA256_CTX              context;
  static char             output[65];
  unsigned char           sha256sum[32];
  unsigned int            j;

  SHA256_Init(&context);
  SHA256_Update(&context, (const unsigned char *)pwd, strlen(pwd));
  SHA256_Final(sha256sum, &context);

  for(j = 0; j < 32; ++j)
  {
    snprintf(output + j * 2, 65, "%02x", sha256sum[j]);
  }
  return output;
}